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Purpose of this lecture

! An introduction of the physical
processes in retrieval of soil moisture

! A review of the state-of-the-art remote
sensing techniques used for retrieving
soil moisture fields from active and
passive microwave systems

! A list of potential data/information
providers of soil moisture



Physical processes in retrieval of soil
moisture (1)

! Two basic approaches: passive microwave (MW) and
active MW remote sensing

! In passive MW methods, the natural thermal emission
of land surface (or brightness temperature) is
measured at microwave wavelengths, using a
radiometer.

! In active MW methods, a microwave pulse is sent and
received. The power of the received signal is
compared to that which was sent to determine the
backscattering coefficient of the surface.

! Both methods provide information on the surface
reflectivity.

! The surface reflectivity R0
p is the integral of the

surface scattering coefficient over all scattering
directions.



Physical processes in retrieval of soil
moisture (2)

! The basic reason microwave remote sensing is capable of
providing soil moisture information is that there is a large
difference between the dielectric constants of water (~80) and
the soil particles (~4).

! The Fresnel reflection equations (Ulaby et al., 1986) predict
the surface reflection coefficient (R0

p) as a function of
dielectric constant (!r) and the viewing angle ("), based on the
polarization of the sensor (p=horizontal-H or vertical-V).

! From the reflection coefficient, the dielectric constant of the
soil can be estimated. The dielectric constant of soil is a
composite of the values of its components: air, soil particles,
and water (bound and free water).
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Physical processes in retrieval of soil
moisture (3)

! Instantaneous up-welling radiation is described by electric fields EH

and EV for horizontal and vertical polarizations. The horizontal field

component is perpendicular to the plane defined by the nadir line SO

and line of sight SP lines, while the vertical component lies in this

plane.

(Source: SMOS level 2

processor Soil moisture ATBD)



Physical processes in retrieval of soil
moisture (4)

! At MW frequency, the Plank’s law can be approximated by the

Rayleigh-Jeans relationship, i.e. that brightness temperature

and radiances are directly proportional.

! The observed brightness temperature (TB
p) of a surface is equal

to its emissivity (!s) multiplied by its physical temperature (Ts).

! The observed emissivity is equal to 1 minus the reflectivity,

which provides the link in the Fresnel equations to soil

moisture.

! Surface variables such as temperature, soil moisture,

roughness, vegetation, etc… enter the general radiative

transfer equation through their effects on surface reflectivity

R0
p and surface brightness temperature TB

p:

! For bare soil surfaces, Ts reduces to a weighted sum of soil

temperatures at subsurface levels accounting for the
penetration depth (!/e).



Physical processes in retrieval of soil
moisture (5)

! On the basis of an estimate of the mixture dielectric constant derived

from the Fresnel equations and soil texture information, volumetric

soil moisture can be estimated (Hallikainen et al. 1985).



A review of methods used to retrieve
soil moisture

1) (Advanced) Synthetic Aperture Radar

(SAR/ASAR) method

2) Microwave radiometer method

3) Wind scatterometer method

4) Synthesis



1) SAR / ASAR method

! Space borne SAR systems

! Theoretical and semi-empirical
scattering approaches

! Surface scattering (bare soil, sparse
vegetation)

! Vegetation scattering (theoretical models)

! Empirical approaches (fitting methods)

! Summary



Space borne SAR systems



Theoretical scattering approaches

2
1

3
4

! Microwave scattering terms that are typically

represented in physical scattering methods

o o o o o

sur veg sur veg veg veg
! ! ! ! !

" "
= + + +



Theoretical scattering approaches

! Surface scattering methods usually relate geometric and dielectric
properties to a bare soil surface backscatter response.

! The most frequently used theoretical surface scattering methods are
originated from the Kirchhoff approaches (Beckmann and Spizzichino, 1963)
and the Small Perturbation Method (Rice, 1957), which are both restricted
to a limited range of roughness conditions.

! In the Integral Equation Method (IEM) (Fung et al. 1992 and Fung 1994) these
two methods are combined to a method valid for a wide range of roughness
conditions.

! Interaction between active microwaves and the vegetation layer consists of
various scattering terms. In the passive case, brightness temperatures can
be modeled using zeroth order approximation of the radiative transfer
equation, because higher order emission terms are relatively small.
However, among active microwave observations higher order scattering
terms (volume scattering) can be responsible for significant amounts of
scattering. Therefore, physical methods (Lang and Sidhu 1983 – Turbid
medium, Ulaby et al. 1990 – MIMICS, and Karam et al. 1992 – UTA) model the
following scattering interactions:
!  Surface scattering;

!  Vegetation scattering;

!  Scattering within the vegetation;

!  Vegetation-surface scattering.



Semi-empirical scattering approaches

! Alternatively, semi-empirical approaches have been
developed that use only the variations in the surface
height (#) to describe the surface roughness.

! Oh et al. (1992) found for scatterometer measurements
that the depolarization ratio (!0

vh/ #0
vv) is very sensitive

to soil moisture and based their semi-empirical model on
this characteristic.

! Dubois et al. (1995) based a semi-empirical method on
only co-polarized observations (!0

hh and !0
vv).

! Semi-empirical backscatter relationships are usually
derived from the ground based active microwave data
sets as described in Oh et al. (1992) and Wegmuller
(1993).



Empirical approaches (fitting methods)

! An example of an empirical change detection method is proposed in

Shoshany et al. (2000), who used the Normalized Backscatter Moisture

Index (NBMI) as a basis for their soil moisture retrieval algorithm:

! where, !0
t1 #

0
t2 and are the backscatter coefficients at different time

steps, ar and br are empirical parameters that should be fitted to in-situ

soil moisture (sm) observations.

! Many empirical relationships have generated accurate soil moisture

retrievals but based on extensive calibrations, which limits the

applicability of these soil moisture retrieval algorithms to a small area.
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1) Summary

! Physical models such as MIMICS require often a detailed parameterization
of the vegetation and soil surface layer, which is typically not available.

! Semi-empirical models have frequently generated good results for specific
areas, but when these techniques are applied to other locations or other
field conditions the accuracy of the soil moisture products decreases
significantly.

! Empirical methods that are based on change detection yield often
accurate soil moisture results, but are strictly speaking not valid for
application that exceed the calibration conditions.

! Currently SAR methods are not able to estimate soil moisture with
sufficient accuracy that can be used to assist disaggregating SMOS soil
moisture products (from ~50km to ~1km).

! The revisit time of the present and future SAR systems for exactly the
same configuration exceeds 15 days. This is often not sufficient for global
soil moisture monitoring products.

! Despite these disadvantages of SAR based soil moisture retrieval, the
proposed L-band PALSAR instrument onboard the Japanese ALOS satellite
offers the opportunity of retrieving soil moisture in a combined
passive/active microwave approach.

! The combination of passive and active microwave observations is
expected to increase the accuracy of the retrievals and can yield high
resolution soil moisture maps.



2) Microwave radiometer method

! Space borne passive microwave sensors

! Passive microwave theory
! Surface roughness effects on the apparent

emissivity
! Vegetation effects on the apparent emissivity

! Passive microwave soil moisture retrieval
algorithms:

! Jackson et al. (1993)
! Owe et al. (2001)
! Bindlish et al. (2003)
! Wen et al. (2003)



Space borne passive microwave
sensors



Passive microwave theory
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Surface roughness effects



Vegetation effects

The effects of vegetation on TB observations are two-fold: 1)
vegetation covers the surface and attenuates the soil surface
emission, 2) vegetation emits microwave radiation and is
responsible for a contribution of radiated energy to sensor.

A method based on the radiative transfer theory described in Mo
et al. (1982)



Passive microwave soil moisture
retrieval algorithms



Retrieved land surface temperature and soil moisture from

TRMM/TMI data compared to GAME/Tibet in-situ data
(Wen, Su, Ma, 2003, JGR)

  



Retrieved land surface temperature and soil moisture from

TRMM/TMI data compared to GAME/Tibet in-situ data
(Wen, Su, Ma, 2003, JGR)

  



2) Summary
! Four soil moisture retrieval algorithms using passive

microwave observations have been discussed: Jackson et
al. (1993), Bindlish et al. (2003), Owe et al. (2001) and
Wen et al. (2003). Each of these methods performs
equally under similar vegetation conditions with the
adjustment of a few parameters and is capable of
retrieving soil moisture with accuracy in the order of 3-5
Vol.-% (Hurkmans et al. 2003).

! Preferably, the optical depth is estimated from the
radiometer observations itself. Owe et al. use, the NPDI
to invert the dielectric constant and the optical depth,
simultaneously. However, retrieving two variables from
one observation might lead to non-unique solutions. The
method proposed by Wen et al. (2003) is more
promising. It uses the NPDI of a bare soil surface and of
a vegetated surface to retrieve the optical depth. The
only difficulty in applying this technique is to find a
SMOS footprint (~25 km), which is only influenced by
bare soil radiation.



2) Summary (cont.)

! As a surface emission model, the one proposed by Wang and Choudhury
(1981) is physically more adequate, because it accounts for depolarization
effects caused by surface scattering. A disadvantage is that both H- and V-
polarized Fresnel reflectivity’s need to be solved requiring two
observations. This might cause difficulties, because the MIRAS instrument is
proposed to be a dual polarized radiometer and has, thus, potentially three
independent observations: Tbh, Tbv  and NPDI. A soil moisture retrieval
algorithm including the Wang and Choudhury surface emission model has
four unknowns: the temperature of the emitting layer, the optical depth
and the H- and V-polarized reflectivity.

! Alternatively, the surface emission model of Choudhury et al. (1979)
requires only one independent observation. This would leave one brightness
observation for the estimation of the temperature of the emitting layer,
but previous studies have shown the difficulty of relating low frequency
observations to the temperature of the emitting layer because of their
dependence to change in soil moisture (De Jeu and Owe 2001).

! For a future SMOS soil moisture retrieval algorithm it would be more
beneficial to use a physically based surface emission model and estimate
the temperature of the emitting layer from other data sources. Several
other data sources are available, such as in-situ measuring networks,
meteorological model predictions and remote sensing observations.



Combined passive and active soil
moisture retrieval

! The theoretical algorithm for passive and active microwave
soil moisture retrieval proposed by O’Neill et al. (1996) is
from a physical point of view the most suitable method to
combine radiometer and SAR observations into one soil
moisture retrieval algorithm. However, the scattering
model used in this algorithm requires several canopy
parameters that are a-priori not known and can not be
derived from other satellite observations.

! Njoku et al. (2002) uses a physically based radiative transfer
approach for passive microwave observations and applies a
change detection method for the SAR measurements. With
the availability of both SMOS and PALSAR sensors this
methodology can be applied on a large scale. However,
global soil moisture monitoring applications are not
feasible, because the revisit time of the PALSAR is 44 days.



3) Wind scatterometer method

! Both Synthetic Aperture Radar (SAR) and
scatterometer are active instruments on board
satellites that measure the backscattering signal.

! SAR
! High spatial resolution
! Compatible with land surface variability
! Very low time sampling of a given region

! Scatterometer
! Low spatial resolution
! Initially designed for ocean observation
! Global coverage in a few days
! Long time operation rather recent, as compared to

radiometers
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Spaceborne Scatterometers

The Advanced SCATterometers (ASCAT) on board METOP

! ERS successor, C-band, 25km resolution, 82% of the globe in 1 day

 

(from NSIDC)
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Scatterometer Sensitivity to Soil Moisture

Sensitive to:

! vegetation

! soil roughness

! soil moisture

! not to surface temperature

(Schmugge et al. 2002; Du et al., 2000)

Depends on the observing angle

Satellite scatterometer observes the Earth with different angles:

! each location not often seen with the exact same angle

! models developed to account for angle dependence



 Temporal variation of the 10-day averaged backscattering at 20° (o) and 45° (*)

incidence angle, for the northern Gourma (01/1992-12/1995). Rainfall (bars) and the

green biomass (dotted line) also indicated (Frison et al., 1998)

Scatterometer Sensitivity to Soil Moisture



Temporal evolution of the NDVI, rainfall observations, and the normalized

backscattering coefficient at 40° over an agricultural region in southern Portugal

(Wagner et al., 1999b)

Scatterometer Sensitivity to Soil Moisture

 



Scatterometer Sensitivity to Soil Moisture

ERS observations versus in situ soil moisture (left) and NDVI (right) for 1993-1994 on a

monthly basis. Upper panels for angles <30°, lower panels for angles > 30°.

Symbols: + Illinois, o Iowa, * Russia, x India, - Mongolia (Prigent et al., 2005)



Scatterometer Sensitivity to Soil Moisture

Annual average of the backscattering coefficient observed by

TRMM/PR and ERS for different land cover (Seto et al., 2003)



 

Monthly mean ERS backscattering coefficient (dB) measured by the 3

antennas and linearly interpolated at 45° for July 1992

Scatterometer Sensitivity to Soil Moisture



From  literature review:

! clear sensitivity to soil moisture

! vegetation impact also very important

! depending on the authors and their objectives,

one sensitivity or the other emphasized…

! relative contributions strongly depend on

environment and difficult to separate

Scatterometer Sensitivity to Soil Moisture



Soil Moisture Retrieval Methods

Physical algorithms based on radiative transfer

calculations

! more or less complex radiative transfer

! locally calibrated

! significant amount of ancillary information

! local application

! extension questionable

Pulliainen et al. (1998):  Boreal forest in Europe

Woodhouse and Hoekman (2000): Sahel and Spain

Jarlan et al. (2002): Sahel

Grippa and Woodhouse (2002): Niger and Sweden



Soil Moisture Retrieval Methods

Detection change methods

! multiple sources of variability at a global scale

! locally, reduced number of variability

! variation in vegetation accounted for by ancillary information

- different sensitivity at different angle (Wagner et al., 1999)

- NDVI observations (Wen and Su, 2003)

Extensive work from Wagner et al.

- for a given location, soil moisture principal source of variability

- vegetation taken into account by the slope parameters

- min (dry) and max (saturated) scattering values to define the soil

moisture index

- 9 years of soil moisture index

 - compared to precipitation  and to model outputs

See also Wen and Su (2003):
! vegetation, soil moisture, roughness have different time variations

! NDVI observations to estimate vegetation contribution



Soil Moisture Retrieval Methodologies
Detection change methods

Limitations:
! can be valuable at a local basis

! qualitative estimate, unless calibrated locally

! for comparison from an area to the next, comparison of moisture index impossible

Example of global soil moisture index, Wagner et al.



3) Summary

ERS scatterometer provides the only long time record.

Sensitivity to soil moisture…but also to vegetation and roughness

Two types of methods developed:

physically-based methods (complex, local)

detection change (global, index only)

Limited use of the synergy with other instruments so far

Recent work to combine scatterometer data (ERS), radiometer observations

(SSM/I), NDVI, and Ts diurnal cycle amplitude  (Prigent et al., Aires et al.,

JGR, 2005)



Combined use of scatterometer and other satellite data

FirstFirst, systematic and objective analysis of collocated satellite data and in situ

soil moisture measures for 2 years:

- satellite data: MW emissivities, MW !0, TIR Ts cycle, NDVI

- Global Soil Moisture Data Bank (Robock et al., BAMS, 2000)

Lower correlation between satellite observations

 and soil moisture than with vegetation

Correlation satellite / soil moisture related

to correlation vegetation /soil moisture



Combined use of scatterometer and other satellite data

Advantages of this method:Advantages of this method:

- Does not depend on radiative transfer codes that can be questionable globally

- Data-fusion of multi-spectral satellite observations

 - Nonlinear model " situation-dependent (important for global scale)

Applications:Applications:

- Consistency checking method: Check the consistency of model output with 

satellite observations

  - Variational assimilation applications: Define a link between observations 

and model (link coherent with model); additional constraint to the model:

spatial and temporal coherency with satellite observations

- SSM/I MW

- TIR Ts Ampl.

- ERS #0

- NDVI

Soil Moisture

Statistical model

(Neural Network)

SecondSecond, find a method that uses all information sources, even the soil moisture

and vegetation link at global scale

  



NCEPECMWF

Consistency checking between model outputs and satellite observations

RMS error statistics

(NCEP)

Combined use of scatterometer and other satellite data



Synthesis



SAR/ASAR: Conclusions

! Physical, semi-empirical and empirical methods have been discussed for soil moisture
retrieval from SAR observations.

! Physical models such as MIMICS (Ulaby et al. 1990) require often a detailed
parameterization of the vegetation and soil surface layer, which is typically not available.

! Soil moisture applications that use semi-empirical models have frequently generated good
results for specific areas, but when these techniques are applied to other locations or
other field conditions the accuracy of the soil moisture products decreases significantly.

! Empirical methods that are based change detection yield often accurate soil moisture
results, but are strictly speaking not valid for application that exceed the calibration
conditions.

! Thus, currently SAR methods are not able to estimate soil moisture with sufficient
accuracy that can be used to assist disaggregating SMOS soil moisture products.

! Further, the revisit time of the present and future SAR systems for exactly the same
configuration exceeds 15 days. This is often not sufficient for global soil moisture
monitoring products.

! Despite these disadvantages of SAR based soil moisture retrieval, the proposed L-band
PALSAR instrument onboard the Japanese ALOS satellite offers the opportunity of
retrieving soil moisture in a combined passive/active microwave approach.

! The combination of passive and active microwave observations is expected to increase the
accuracy of the retrievals and can yield high resolution soil moisture maps.



Microwave radiometer methods: Conclusions

! Four soil moisture retrieval algorithms using passive microwave observations
have been discussed: Jackson et al. (1993), Bindlish et al. (2003), Owe et al.
(2001) and Wen et al. (2003). Each of these methods performs equally under
similar vegetation conditions with the adjustment of a few parameters and
is capable of retrieving soil moisture with accuracy in the order of 3-5
Vol.-% (Hurkmans et al. 2003).

! The Jackson algorithm uses a physically based methodology, but requires
several additional data sources for operational applications, such as
temperature of the emitting layer, optical depth and vegetation cover. The
dependency to these different ancillary data sets has been partly resolved
by Bindlish et al (2003). However, the retrieval of the optical depth is
related to the NDVI, which is not desirable. The NDVI is sensitive to changes
in W, but not to dry biomass. Thus, for tree-type vegetation cover lower
NDVI values are observed than for tall grass lands, which do not correspond
to response of microwaves. Further, the signal of the NDVI saturates at
intermediate levels of W (Jackson et al. 2003).

! Preferably, the optical depth is estimated from the radiometer observations
itself. Owe et al. use, the NPDI to invert the dielectric constant and the
optical depth, simultaneously. However, retrieving two variables from one
observation might lead to non-unique solutions. The method proposed by
Wen et al. (2003) is more promising. It uses the NPDI of a bare soil surface
and of a vegetated surface to retrieve the optical depth. The only difficulty
in applying this technique is to find a SMOS footprint (~15 km), which is only
influenced by bare soil radiation.



Microwave radiometer methods: Conclusions

! As a surface emission model, the one proposed by Wang and Choudhury (1981)
is physically more adequate, because it accounts for depolarization effects
caused by surface scattering. A disadvantage is that both H- and V-polarized
Fresnel reflectivity’s need to be solved requiring two observations. This might
cause difficulties, because the MIRAS instrument is proposed to be a dual
polarized radiometer and has, thus, potentially three independent
observations: ,  and NPDI. A soil moisture retrieval algorithm including the
Wang and Choudhury surface emission model has four unknowns: the
temperature of the emitting layer, the optical depth and the H- and V-
polarized reflectivity.

! Alternatively, the surface emission model of Choudhury et al. (1979) requires
only one independent observation. This would leave one brightness
observation for the estimation of the temperature of the emitting layer, but
previous studies have shown the difficulty of relating low frequency
observations to the temperature of the emitting layer because of their
dependence to change in soil moisture (De Jeu and Owe 2001).

! For a future SMOS soil moisture retrieval algorithm it would be more beneficial
to use a physically based surface emission model and estimate the
temperature of the emitting layer from other data sources. Several other data
sources are available, such as in-situ measuring networks, meteorological
model predictions and remote sensing observations.



COMBINED ACTIVE AND PASSIVE METHODS: CONCLUSIONS

! The theoretical algorithm for passive and active
microwave soil moisture retrieval proposed by O’Neill et
al. (1996) is from a physical point of view the most
suitable method to combine radiometer and SAR
observations into one soil moisture retrieval algorithm.
However, the scattering model used in this algorithm
requires several canopy parameters that are a-priori not
known and can not be derived from other satellite
observations.

! Njoku et al. (2002) uses a physically based radiative
transfer approach for passive microwave observations and
applies a change detection method for the SAR
measurements. With the availability of both SMOS and
PALSAR sensors this methodology can be applied on a
large scale. However, global soil moisture monitoring
applications are not feasible, because the revisit time of
the PALSAR is 44 days.



Wind scatterometer method: Conclusion

! The wind scatterometers have characteristics that are very valuable for long term monitoring of
global land surface parameters: they cover the globe with a spatial resolution and sampling rates
that are fully compatible with regional to global applications. In addition, they have a very high
instrumental stability that is adequate for the analysis of long time series.

! The backscattering coefficients are sensitive to several factors, surface roughness, vegetation and
soil moisture essentially, their respective contribution varying with the environment. The
contributions from the vegetation and the soil moisture are complicated and their separation is
not trivial.

! Two different approaches have been attempted to retrieve soil moisture information from wind
scatterometer data, the physically-based methods and the empirical change detection technique.

! The modeling approach makes it possible to better understand the measurement processes.
However, it can be difficult to implement even on a regional scale: it requires ancillary
information that are not always available and / or specific calibration for each environment.

! The detection change schemes have demonstrated the sensitivity of scatterometer measurements
to variations in surface soil moisture at a given location. External information like the NDVI or the
analysis of multiple angle observations helps subtract the vegetation contribution from the signal.
These methods provide soil moisture indexes for a given location but, contrary to the modeling
approach, they cannot directly estimate quantitative soil moisture information, unless they are
calibrated using external data sources.

! Recent developments include the use of multi-satellite information and land surface model
outputs to better constrain the problem. For example, Prigent et al. [2005] and Aires et al. [2005]
combine land surface model outputs and a suite of satellite data from the visible to the microwave
on a global basis over two years, to derive soil moisture estimates. The satellite data include: ERS
scatterometer data at low and high angles, passive microwave emissivities calculated from SSM/I,
thermal infrared information derived from the available geostationary satellites and the AVHRR
visible and near-infrared reflectances. Using multi-satellite information clearly helps separate the
contributions from the vegetation and the soil and makes it possible to derive a soil moisture
estimate with a theoretical error within 5%


