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Typical surface spectral signatures

• Leaves
§ Visible: pigment

absorption

§ NIR: cell structure

§ MIR: water and
cellulose absorption

• Soils

§ chemical composition

§ structure

§ water content

• Water

§ sediments

§ dissolved organic
matter

§ chlorophyll

• Snow and ice

§ grain size

§ age



Normalized Difference Vegetation Index

• NDVI is defined as

• where
§ !RED is the target reflectance

in the red spectral band

§ !NIR is the target reflectance
in the red spectral band

• Historically, NDVI

§ was introduced to exploit early
(2-bands) sensors such as
ERTS and AVHRR

§ is neither a geophysical variable
nor optimized for any particular
purpose
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• Proper interpretation: The higher the NDVI, the higher the

probability that the target contains vegetation



Limitations of vegetation indices

• NDVI is sensitive to various perturbing factors, including:
§ atmospheric constituents (aerosols, water vapor)

§ directional effects (targets are spectrally anisotropic)

§ soil color changes (e.g., as a function of water content)

• Numerous authors have attempted to modify the NDVI formula
§ Cottage industry of vegetation indices: PVI, SAVI, ARVI, and the like

§ These indices generally exhibit some improvement in one respect at the
expense of some degradation in another respect

• Vegetation indices have been largely abused by attempting to
correlate them with LAI, FAPAR, biomass, precipitations, herbivore
density, etc

• When applied to data from different sensors, these formulae yield
incompatible results because of differences in
§ orbits, time of passage at the Equator, Sun and view angles, etc

§ spectral bands, calibration and performances of various sensors

• All these drawbacks have long been exhaustively described in the
literature

• The only rational approach to address all issues at once is to design
quantitative indicators through a rational methodology
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Optimal VI design (0)

• For the purpose of demonstration only, consider a sensor with only

2 spectral bands (RED and NIR), such as AVHRR

• Require an indicator that is sensitive to the amount of vegetation

and insensitive to the usual perturbing factors (soil wetness,

atmospheric effects, etc)

• Show graphically the process of environmental indicator design

(isoline bending) and the necessary compromises

Ref: Verstraete, M. M. and B. Pinty (1996)  'Designing optimal spectral indices for remote sensing

applications', IEEE Transactions on Geoscience and Remote Sensing, 34, 1254-1265.



Optimal VI design (1)

• Idealized full canopy:

§ full absorption in the RED

§ full reflection in the NIR

• Formula:

• Remaining issues:

§ index diminishes with vegetation

amount

§ Isolines are equally spaced but

physics tells us of non-linear

reflectance response to

vegetation amount
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Ref: Verstraete, M. M. and B. Pinty (1996)  'Designing optimal spectral indices for remote sensing

applications', IEEE Transactions on Geoscience and Remote Sensing, 34, 1254-1265.



Optimal VI design (2)

• Idealized full canopy:
§ Non-linear index to ensure linear

response to variable of interest

• Formula:

• Remaining issue:
§ Vegetation is not perfectly

absorbing in the RED or
reflecting in the NIR

222
)1(

1

NIRRED

IVI
!! "+

=

Ref: Verstraete, M. M. and B. Pinty (1996)  'Designing optimal spectral indices for remote sensing

applications', IEEE Transactions on Geoscience and Remote Sensing, 34, 1254-1265.



Optimal VI design (3)

• Realistic full canopy:
§ Typical reflectance and

absorption coefficients

• Formula:

• Remaining issue:
§ What about sensitivity to soil

changes?
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Ref: Verstraete, M. M. and B. Pinty (1996)  'Designing optimal spectral indices for remote sensing

applications', IEEE Transactions on Geoscience and Remote Sensing, 34, 1254-1265.



Optimal VI design (4)

• Insensitivity to soil (only):
§ Wet soils darken in both spectral

bands about equally

• Formula:

• Remaining issue:
§ Combine sensitivity to

vegetation and insensitivity to
soil changes
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Ref: Verstraete, M. M. and B. Pinty (1996)  'Designing optimal spectral indices for remote sensing

applications', IEEE Transactions on Geoscience and Remote Sensing, 34, 1254-1265.



Optimal VI design (5)

• Optimal index for both
vegetation and soils:
§ Product of IVI3 and PVI

• Formula:

where

is the Perpendicular Vegetation
Index

• Remaining issue:
§ What about sensitivity to

atmospheric effects?
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Ref: Verstraete, M. M. and B. Pinty (1996)  'Designing optimal spectral indices for remote sensing

applications', IEEE Transactions on Geoscience and Remote Sensing, 34, 1254-1265.



Optimal VI design (6)

• Insensitivity to water vapour
(only):
§ Atmospheric humidity affects

only the NIR channel

• Formula:

• Remaining issue
§ Combining all requirements so

far
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Ref: Verstraete, M. M. and B. Pinty (1996)  'Designing optimal spectral indices for remote sensing

applications', IEEE Transactions on Geoscience and Remote Sensing, 34, 1254-1265.



Optimal VI design (7)

• Optimal index for:

§ maximum sensitivity to
vegetation

§ minimum sensitivity to soils and
water vapour

• Formula:

• Remaining issue:

§ What about sensitivity to
aerosols?

§ etc…
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Ref: Verstraete, M. M. and B. Pinty (1996)  'Designing optimal spectral indices for remote sensing

applications', IEEE Transactions on Geoscience and Remote Sensing, 34, 1254-1265.



Summary of requirements and constraints

• Scientific requirements
§ Generate a product highly sensitive to a specific vegetation property

• well-identified, carefully selected biophysical variable (FAPAR, LAI, biomass,
height…)

• measurable in the field

• directly usable in a model or application

• with a documented accuracy

§ Generate a product as insensitive as possible to perturbing processes
• atmospheric effects (e.g., aerosols and gaseous constituents)

• directional effects

• soil composition, texture and water content

§ Design a family of compatible algorithms
• each optimized for a particular platform and sensor (SeaWiFS, MERIS,

VGT, MISR, MODIS, …)

• generating demonstrably coherent products

• Operational constraints
§ Limited computational load

§ Estimation on the basis of simultaneous spectral measurements only

§ Taking full account of the specifications of each platform and sensor

§ Suitable to monitor vegetation changes in space or in time
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Practical implementation

• Selection of the biogeophysical variable:

§ LAI: Leaf Area Index (m2 m-2)

§ Difficulties in estimating LAI, saturation

§ PAR: Photosynthetically Active Radiation (~400 to 700 nm)

§ FAPAR: Fraction of Absorbed Photosynthetically Active
Radiation

§ Measure of plant productivity, mostly in top canopy layer

• Instruments:

§ SeaWiFS (1997-2005)

§ MERIS (2002-present)

§ others: MISR, MODIS, VEGETATION, GLI, etc

• Assumptions:

§ Blue channel to correct for atmospheric effects (mostly aerosols)

§ Canopy anisotropy represented by standard RT models

§ Soil types represented by a database of typical values



What is FAPAR?
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Algorithm optimization

Ref: Verstraete and Pinty (1996) and Gobron et al. (2000), IEEE TGRS

Radiation Transfer Models

BRF TOA BRF TOC FAPAR

Rectified Red

Angular/Atmospheric effects

   

Rectified NIR
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Accuracy improvement (1)

Ref: Gobron et al. (2000), IEEE TGRS

VGTNDVI OVNI



Accuracy improvement (2)

Ref: Gobron et al. (2000), IEEE TGRS

SeaWiFSNDVI SGVI



Algorithm utilization

BRF TOA Observation Sun

Satellite Data

Rectified Red Rectified NIR

Angular/Atmospheric `Rectification'
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Daily observations

1 June 2000

2 June 2000

3 June 2000

FAPAR:



Decadal composite

1 – 10 June 2000



Monthly composite

1 – 30 June 2000



Using spectral and directional information

Ref: Pinty, B. et al. (2002) 'Uniqueness of Multiangular Measurements, Part 1: An Indicator of Subpixel Surface

Heterogeneity from MISR',  IEEE Transactions on Geoscience and Remote Sensing, MISR Special Issue, 40,

1560-1573.
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MERIS FAPAR product



FAPAR products comparison

03 August 2002

MERIS browse9:43

9:32

SeaWiFS browse

11:12

11:23

Ref: Gobron, N. et al. (2002) ‘MERIS Land Algorithm: preliminary results’, in Proceedings of the

ENVISAT Validation Workshop, Frascati, Italy, ESA SP 53.



Remapping: MERIS ! SeaWiFS

MERIS browse
9:43

9:32

Geographical

domain sampled

by both MERIS

& SeaWiFS

MERIS data re-

mapped into

the SeaWiFS

orbit

SeaWiFS browse

11:12

11:23



MERIS vs. SeaWiFS

Orbit 1579

@ 09:48

(Push-broom)

(Lat: 42.123/49.557; Lon: 3.575/19.902)

SeaWiFS

@ 11:17

(Scanner)



MGVI vs. SGVI (1)

2002/06/19Re-mapped MGVI

Re-mapped SGVI



MGVI vs. SGVI (2)

2002/06/19

Ref: Gobron, N. et al. (2002) ‘MERIS Land Algorithm: preliminary results’, in Proceedings of the ENVISAT

Validation Workshop, Frascati, Italy, ESA SP 53.



MGVI vs. SGVI (3)

Ref: Gobron et al. , 2003, EUR Report 20764 EN.



MGVI vs. SGVI (4)

Ref: Gobron et al. , 2003, EUR Report 20764 EN.
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2003 European drought detection (1)

April

July August September

    -.3      -.2     -.1     0      .1       .2

.3

May June

FAPAR anomalies compared to base period 1998-2002

Ref: Gobron, N. et al. (2005) 'The state of vegetation in Europe following the 2003 drought', International

Journal of Remote Sensing, 26, 2013-2020.



2003 European drought detection (2)

Ref: Gobron, N. et al. (2005) 'The state of vegetation in Europe following the 2003 drought', International

Journal of Remote Sensing, 26, 2013-2020.



2003 European drought detection (3)

Ref: Gobron, N. et al. (2005) 'The state of vegetation in Europe following the 2003 drought', International

Journal of Remote Sensing, 26, 2013-2020.



2003 European drought detection (4)

Ref: Gobron, N. et al. (2005) 'The state of vegetation in Europe following the 2003 drought', International

Journal of Remote Sensing, 26, 2013-2020.



Characterizing growing seasons (1)

• Objectives:
§ Detect if the observed ecosystem exhibits a seasonal pattern or not

§ Objectively quantify the start and end of each growing season

• Challenges:
§ Missing values

§ No or multiple growing seasons per year

§ Unexpected events (e.g., fire)

• Approach:
§ Fit S-shaped curves through the data for successive positions of a

moving window, then analyze the results

• Outcomes:
§ Estimates of start, end and length of growing season each year

§ Additional environmental indicators: value of FAPAR at the peak of the
season and integrated value over the season



Characterizing growing seasons (2)

• Parametric sigmoid model:

• Definitions:

§ The start of the growing season is deemed to occur, within a given 12-
month period, on the first decade with valid FAPAR observations within
the moving window period for which the absolute value of the model
amplitude parameter a is maximal and the slope parameter b is positive

§ The end of the growing season is deemed to occur, within a given 12-
month period, on the last decade with valid FAPAR observations within
the moving window period for which the absolute value of the model
amplitude parameter a is maximal and the slope parameter b is negative
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Characterizing growing seasons (3)



Characterizing growing seasons (4)




