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Notation
E.g. Ide et al, J.Met.Soc.Japan, 1997

The unknown “true” state vector of the system 
!discrete in space and time, e.g. an appropriate grid"
box average, at a time    , of the true continuum state 
of the atmosphere#. Dimension n.
The forecast of the state vector, obtained from a 
!non"linear# model, 

xa(ti)

x f(ti)
x f(ti+1) = Mi[x f(ti)]

xt(ti)

ti

y0
i A vector of observations at time    , dimension  ti

The analysis of the state vector, after including the 
information from the observations

pi
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A normal !or Gaussian# probability distribution for a 
random variable    is fully determined by the mean
and standard deviation

Normal distributions

N(xm,s2)∼ exp[−(x− xm)2

2s2 ]

xm
s

x

N(xm,P)∼ exp[−1
2(x−xm)TP−1(x−xm)]

This can be extended to vector quantities, with 
covariance matrix P
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The default assumption in data assimilation is to assume 
that the a!priori probability density functions !PDF# are 
normal distributions.

This is a convenient choice:
• Normal PDF’s are described by the mean and 

covariance only: no need for higher"order moments
• The square in the exponent is easy to work with
• A Gaussian PDF remains Gaussian after linear 

operations
• Assimilation: when the a!priori PDFs are normal, and 

for linear operators, the a!posteriori PDF is also normal

Normal distributions
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The default assumption in data assimilation is to assume 
that the a!priori probability density functions !PDF# are 
normal distributions.

This is also the most obvious choice:
" Because of the Central Limit Theorem

Normal distributions
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Let          ... be a sequence of independent identically 
distributed random variables with finite means     and 
finite non"zero variance      , and let

X1,X2
µ

s2

Central limit theorem
E.g. Grimmett and Stirzaker, Probability and random processes

Sn = X1 +X2 + ...+Xn

Then
Sn−nµ√

ns2
→ N(0,1) as n→ •
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Central limit theorem: throwing dice
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Central limit theorem: throwing dice
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Central limit theorem: throwing dice
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Conclusion:
The envelope of the 
probability 
distribution of the 
sum of a few dice is 
rapidly approaching a 
Gaussian 

Central limit theorem: throwing dice
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Central limit theorem
In words:

When the uncertainty of a quantity is the result of many 
independent random processes !error sources#, then the 
probability distribution function !PDF# of the quantity 
will be approximately Gaussian !normal#

or

Without further knowledge a Gaussian distribution is the 
most natural candidate for the PDF
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Kalman filter: starting points
Model and model error:
The model      describes the evolution of the state,M

xt(ti+1) = M[xt(ti)]+h(ti)

Q =
〈
h(ti)h(ti)T〉〈h〉 = 0

x f(ti+1) = M[x f(ti)]
The model will have errors,

which will be assumed random, normally 
distributed, with mean zero and covariance Q(ti)

For linear models                , a matrix.
For weakly non"linear models a linearization may be 
performed about the trajectory            

Mi = Mi

x f(ti)
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Kalman filter: starting points
Observation and observation operator !1#:
Observations that are available at time t are related to the 
true state vector by the observation operator,

yo
i = Hi[xt(ti)]+ ei

The observation operator       may range from a simple linear 
interpolation to the position of the observation, to a 
complicated non"linear full radiative transfer model in the 
case of radiance observations.
Remote sensing observations generally involve the retrieval 
averaging kernel matrix      and retrieval a!priori states, 

Hi

yo−yo,ap = A(xt−xap)
A
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Kalman filter: starting points
Observation and observation operator !2#:

yo
i = Hi[xt(ti)]+ ei

The noise process is again assumed to be normal, with mean 
zero and covariance     , combining errors of different origin, 
• Instrumental and retrieval errors
• Averaging kernel errors
• Interpolation / representativeness errors

R

State vector covariance:
The error covariance associated with     is P fx f

P f(ti) = 〈[x f(ti)−xt(ti)][x f(ti)−xt(ti)]T〉
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Example 1
One observation, one grid point

y = xt + e
〈h2〉 = P 〈e2〉 = R 〈eh〉 = 0

We choose as estimate of x a value in between the forecast 
and observation,

x̂ = (1− k)x f + ky 0≤ k ≤ 1

x f = xt +h

Exercise: 
Show that the a!posteriori variance      is minimal for V

k = P/(P+R) V = PR/(P+R)
 Hint: 

V = 〈(x̂− xt)2〉 ∂
∂k

V = 0and solve
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Example 1
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Example 1, using Bayes rule
Conditional probability

Px|y What we want to know: the a"posteriori 
PDF of x, given that a measurement 
returns a value y

Py|x The conditional PDF of the measurement given that 
the state has a value x. Py|x ∼ N(x,R)

Px The PDF of the state x. Px ∼ N(x f ,P)

Py The a!priori PDF of the observation. This 
is just a normalisation factor.
Py =

Z
Py|x Px dx
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Example 1, using Bayes rule
Exercise: 
Use Bayes rule

Px|y =
Py|xPx

Py

to show that the a!posteriori PDF is equal to

Px|y ∼ N
[

x f +
P

P+R
(y− x f),

PR
P+R

]
Note: the minimum variance estimate and maximum 
probability solutions are identical.
This result is quite general, related to the use of normal 
PDF’s and linear operators.
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Sequential assimilation: Kalman filter
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Construct the optimal state 
!analysis# and a!posteriori 
covariance matrix by 
including observations step by step
• At time    the analysis is based on all previous observations,

at times                           The information from previous 
time steps is accumulated in the covariance matrix.

One Kalman cycle consists of 
• Propagation of the state vector and covariance in time
• Analysis of the state vector and covariance, based on the

observations available at that time

Sequential assimilation: Kalman filter

ti
t j ; j ≤ i
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Kalman filter: forecast step

x f(ti+1) = Mi[xa(ti)]

P f(ti+1) = MiPa(ti)MT
i +Q(ti)

Eq. 1 extended Kalman filter: State vector forecast

Eq. 2 extended Kalman filter: Error covariance forecast

The error covariance is propagated in time in the same way 
as the state vector, namely through the model. P increases 
with time due to the model error covariance which is added 
every time step.
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Kalman filter: covariance forecast
Exercise:
Derive the second Kalman equation

Hint:
P f(ti+1) =

〈
[x f(ti+1)−xt(ti+1)][x f(ti+1)−xt(ti+1)]T

〉
and use the linear model to express                 in terms of x f(ti+1) x f(ti)
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Kalman filter: covariance forecast

Example: passive tracer transport

Lagrangian approach: define the model on a set of 
trajectories instead of a fixed grid. The model for the 
passive tracer is now a simple unity matrix.

Mi = I P f(ti+1) = Pa(ti)+Q(ti)

Or: the passive tracer variance of air parcels, and the 
correlations between parcels are conserved in time
in the absence of observations and 
for a perfect model Q(ti) = 0
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Kalman filter: covariance forecast

Example: 
passive tracer transport

The image shows several rows 
of the covariance matrix after 
24 h of 2D advection, starting 
from a simple homogeneous 
isotropic correlation matrix.

Source: Kris Wargan, NASA
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Kalman filter: analysis step

Eq. 3 extended Kalman filter:  State vector analysis

Eq. 4 extended Kalman filter:  Error covariance analysis

Ki = P f(ti)HT
i
[
HiP f(ti)HT

i +Ri
]−1

Kalman gain matrix

Pa(ti) = (I−KiHi)P f(ti)

xa(ti) = x f(ti)+Ki
(
yo

i −Hi[x f(ti)]
)
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Kalman filter: analysis step
Derivation of Kalman equations 3 and 4  !linear operators#
The derivation follows Bayes rule !see the example#
−2lnPx|y = [yo

i −Hix(ti)]T Ri
−1 [yo

i −Hix(ti)]

The sum of quadratic terms is also quadratic, so this can be
written as
−2lnPx|y = [x(ti)−xa(ti)]T Pa(ti)−1 [x(ti)−xa(ti)]+ c2

+
[
x(ti)−x f(ti)

]T P f(ti)
−1[

x(ti)−x f(ti)
]
+ c1

These two equations define             and  Pa(ti)xa(ti)

Exercise :"#     Warning: this equivalence will lead to matrix expressions that look 
different from, but are equivalent to, the analysis Kalman equations 
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Kalman filter: analysis step

State analysis interpretation:
The Kalman gain matrix controls how much the analysis is 
forced to the observations 

%remember the example, where                          & k = P/(P+R)

• When K is small, the analysis will approach the forecast
• When K is “large”, the analysis will reproduce the

observations as much as possible

xa(ti) = x f(ti)+Ki
(
yo

i −Hi[x f(ti)]
)
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Kalman filter: analysis step

Covariance analysis:
The covariance analysis equation can be written as

Pa(ti) = P f(ti)−P f(ti)HT
i
[
HiP f(ti)HT

i +Ri
]−1 HiP f(ti)

* **** *

The * indicate the dimension of the space of the matrices:
* State space, dimension  
* Observation space, dimension 

n
pi

State analysis:
xa(ti) = x f(ti)+P f(ti)HT

i
[
HiP f(ti)HT

i +Ri
]−1(

yo
i −Hi[x f(ti)]

)
* * * *
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One observation:
The variance at the observation, write HiP f(ti)HT

i
Ri

Kalman filter: analysis step

Now a number, write 
Hi Now a vector of dimension n. Suppose this is a 

simple interpolation, e.g. one at the gridbox 
with the observation, zero elsewhere 

The analysis equation for the variance in grid box l :

Pa
ll = Pf

ll−
Pf

loP f
ol

P f
oo +R

Pf
oo

R
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Note:
• P reduced at the observations

with a factor 
• P also reduced in the 

neighbourhood of the observation.
Influence radius determined by the correlation length L.

One observation

Kalman filter: covariance analysis

Pa
ll

Pf
ll

R = 0.25

l

Pf
lo = slsoe−|l|/L ; L = 40

Correlation model:

R/(P+R)
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One observation

Kalman filter: covariance analysis

The corresponding 
state analysis
Note:
• Again the information is 

used in an area determined
by the length L

x f(ti)
xa(ti)

yo
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Kalman filter: covariance 
Example: 
ozone column assimilation

The plot demonstrates key 
aspects of the Kalman filter 
covariance evolution:
• Reduction at observations
• Model error 

!error growth#
• Covariance advection  

Total ozone standard deviation !DU#
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Importance of correlations
Correlations

• Information spread over a region with radius given by the 
model error covariance correlation length

• Efficient removal of model biases with “few” observations
• Avoids spurious “spikes” in analysis at observations 
Significance of correlation length 
• Acts as a low"pass filter for the observations: 

" The model is strongly forced towards the observational 
information which varies slowly w.r.t. correlation length

" Nearby observations: the analysis adopts the mean of
 the observations and the variability of the observations 

has only a minor influence on the analysed state
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Covariance matrices: many unknowns
The Kalman filter is optimal only when the a!priori 
covariance matrices are realistic

Major problem:
How to choose all the matrix elements of        and        ? 

Recipes:
• Simple model of      and     , with just a couple of 

parameters, to be determined from the
observation"minus"forecast statistics

• “NMC method”, for time independent     : 
use the differences between the analyses and forecast fields

 as a measure of the covariance !diagonal, correlations# 

Q R

Q R

P
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Kalman filter: computational problem
For practical atmosphere/ocean applications the Kalman 
filter is far too expensive:
• Only state vectors with               elements are practical, but 

a typical state"of"the"art model has        elements
• Example: if applying the model takes    min for

then propagation of the variance will take       times as long,
i.e. about two years ! Storage of the complete covariance
matrix is also enormous.  

Conclusion:
" Efficient approximations are needed for large problems

≤ 1000
106

n = 106

2n
1
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Kalman filter: practical aspects
A few practical problems:
• Covariance matrices are positive definite !needed to 

calculate the inverse#. Truncations and rounding may easily 
cause negative eigenvalues.

• The model error term Q should be large enough to explain
 the observed 
Filter divergence: occurs if a simple choice of Q leads to 
values of P which are unrealistically small in parts of the 
state space. The model will drift away from the observations

yo
i −Hi[x f(ti)]

c2 test: e.g. Menard, 2000〈(
yo

i −Hi[x f(ti)]
)T [

HiP f(ti)HT
i +Ri

]−1(
yo

i −Hi[x f(ti)]
)〉≈ 1
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Optimal !statistical# interpolation
Until recently, the OI sub"optimal filter was the most 
widespread scheme for numerical weather prediction

OI approximation: 
Replace the covariance matrix      by a prescribed, time"
independent “background” covariance     .  The Kalman filter 
reduces to

P
B

xa(ti) = x f(ti)+BHT
i
[
HiBHT

i +Ri
]−1(

yo
i −Hi[x f(ti)]

)x f(ti+1) = Mi [xa(ti)]

The expensive covariance forecast and analysis equations are 
avoided
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Sub"optimal Kalman filter
Several fundamental Kalman filter properties can be 
maintained by expressing the covariance as a product of a 
time"dependent diagonal matrix and a time"independent 
correlation matrix.

D f(ti+1) = N [Da(ti)]

Ba(ti) = B f(ti)−B f(ti)HT
i
[
HiB f(ti)HT

i +Ri
]−1 HiB f(ti)

Da(ti) = diag [Ba(ti)]

A variance propagation model has been introduced here

B = D1/2CD1/2
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Low rank Kalman filters
Idea: 
Use a finite subset of vectors !leading eigenvectors, random 
ensemble# to describe the covariance matrix
• Reduced rank square root filter !Verlaan & Heemink, 1997#
• Ensemble Kalman filter !Evensen, 1994# 
• Singular evolutive extended/interpolated Kalman 

!SEEK/SEIK; Pham, 1998; Verron, 1999#
• Error subspace statistical estimation !Lermusiaux, 1999#
• ECMWF !M. Fisher#
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