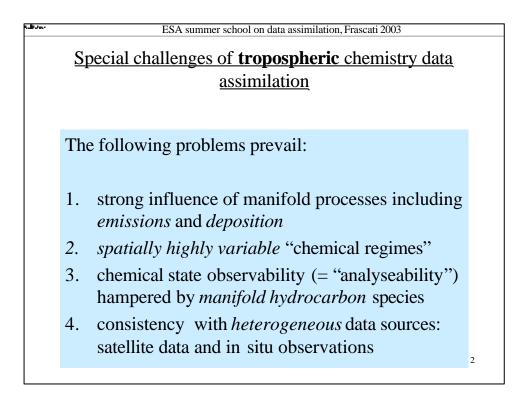
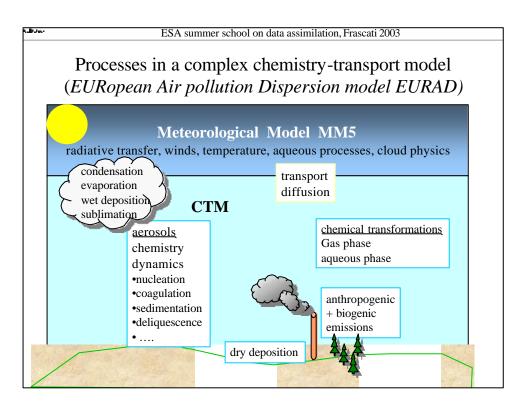
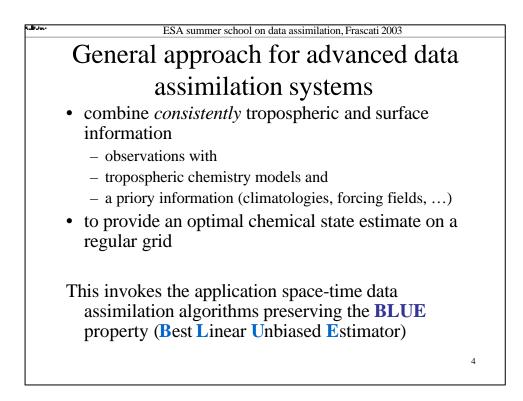
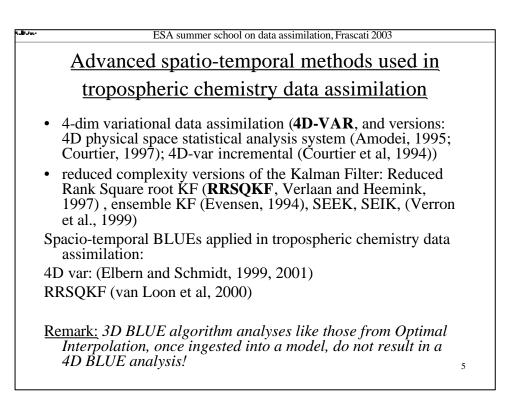


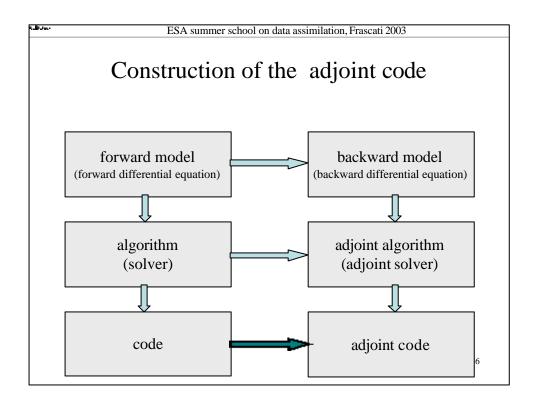
ESA summer school on data assimilation, Frascati 2003 Lecture 1 Data assimilation and tropospheric chemistry H. Elbern Rhenish Institute for Environmental Research at the University of Cologne





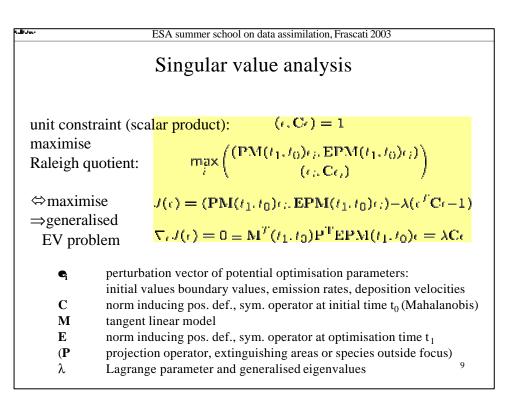


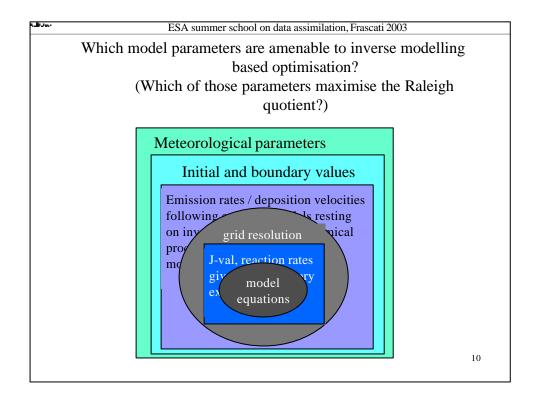


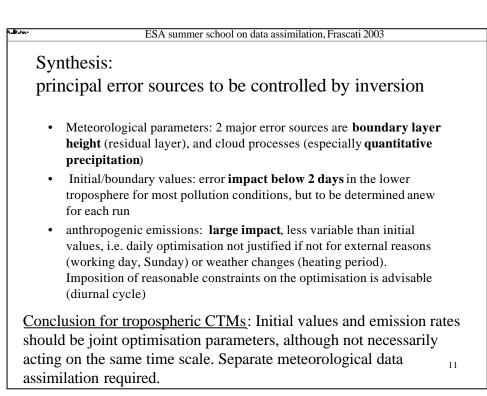


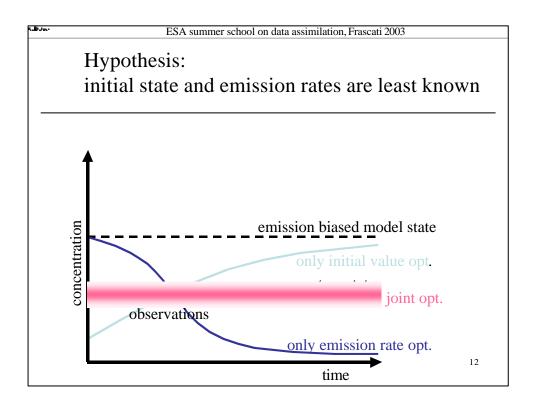
direct	Tendency chemistry transport equation	y Equatio	ns
			_0(t))
01 01 +	$\nabla \cdot (\mathbf{v}c_i) - \nabla \cdot (\rho \mathbf{K} \nabla_{\rho}^{\underline{c}_i}) - \sum_{r=1}^{R} \left(k(r) \left(s_i(r, \mathbf{k}) \right) \right)$	$+) = s_i(r))$	$\left(\Pi_{j=1}^{U} e_j^{(U-1)}\right) = E_i + D_i$
c_i	concentration of species i	c_{1}^{*}	adjoint of concentration of species i
v	wind velocity	8	stoichiometric coefficient
k(r)	reaction rate of reaction r	K	diffusion coefficient
U	number of species in the mechanism	R	number of reactions in the mechanism
E_i	emission rate of species i (source)	D_i	deposition rate of species $i \ ({\rm sink})$
adjoir	at chemistry transport equation		
-			
$=\frac{\partial \delta c}{\partial r}$	$\frac{1}{2} - \mathbf{v}\nabla \delta c_i^* - \frac{1}{\rho}\nabla \cdot (\rho \mathbf{K}\nabla \delta c_i^*) + \sum_{r=1}^{R} (k(r)^{\frac{r+1}{2}})$	$\frac{(r_{-})}{m} \prod_{i=1}^{U} \bar{c}_{i}^{(s)}$	$\Sigma_{n=1}^{U} \Sigma_{n=1}^{U} \left(s_n(r_+) - s_n(r) \right) \delta c_n^* \right) = 0$

namerarin.	ESA summer school on data assimilation, Frascati 2003
	1. Strong influence of emissions and deposition
	Does it really suffice to optimise the initial concentration values in the troposphere? No , it does not!
	Which other parameters must be optimised to improve analysis and forecast skill? A rule of thumb: parameter with maximal (paucity-of- knowledge * impact)
	With valid Gaußian error characteristics and tangent linearisation a more precise formulation can be given:
	8

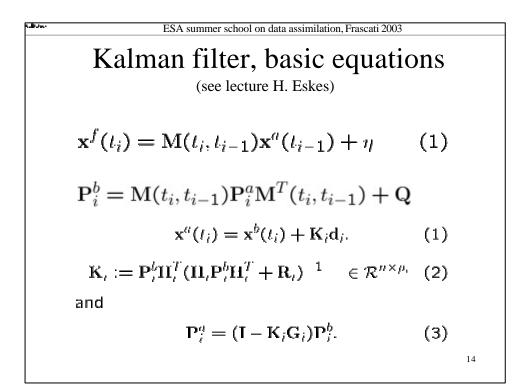


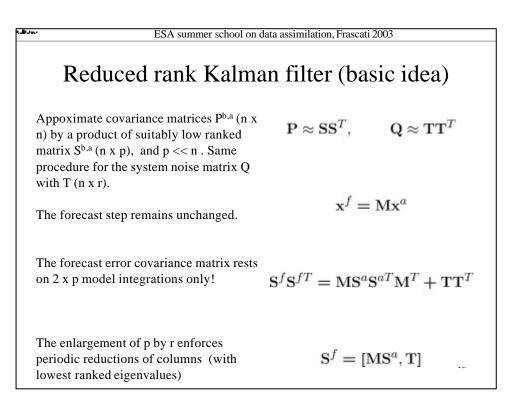




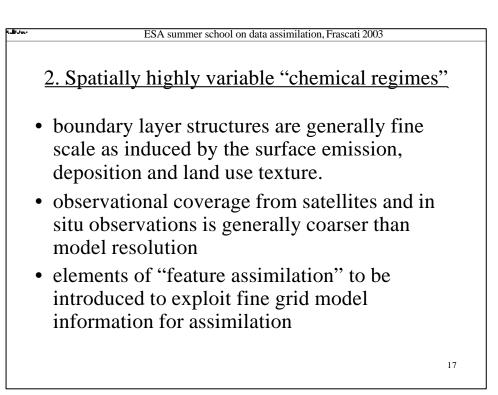


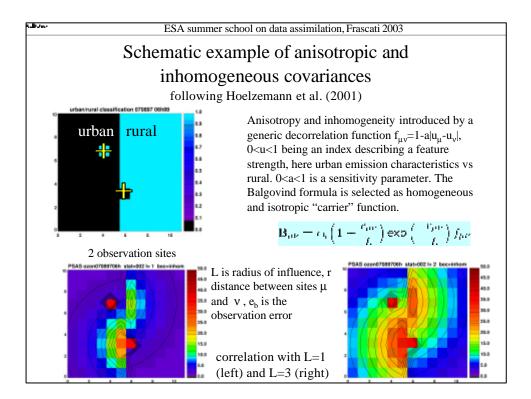
•	ESA summer school on data assimilation, Frascati 2003					
	In the troposphere for emission rates the					
	product (paucity of knowledge*importance)					
is high						
Emission Rate Optimization						
		for a second second				
$J(\mathbf{x}(t))$	t_0 , \mathbf{e}) = $\frac{1}{2} (\mathbf{x}^b(t_0) - \mathbf{x}(t_0))^T \mathbf{B}_0^{-1} (\mathbf{x}^b(t_0) - \mathbf{x}(t_0)) + \dots$	deviations from background initial sta				
	$\frac{1}{2}\int_{t_0}^{t_N} (\mathbf{e}_b(t) - \mathbf{e}(t))^T \mathbf{K}^{-1} (\mathbf{e}_b(t) - \mathbf{e}(t)) dt +$	deviations from a priori emission rate				
	$\frac{1}{2} \int_{t_0}^{t_N} \left(\mathbf{y}^0(t) - H[\mathbf{x}(t)] \right)^T \mathbf{R}^{-1} (\mathbf{y}^0(t) - H[\mathbf{x}(t)]) dt$	model deviations from observations				
$\mathbf{x}^{b}(t_{0})$	background state at $t = 0$					
$\mathbf{x}(t)$	model state at time t					
$\mathbf{e}_{b}(t_{0})$	background emission rate at $t = 0$					
$\mathbf{e}(t)$	emission rate field at time t					
K	emission rate error covariance matrix					
H[]	forward interpolator					
$\mathbf{y}^{0}(t)$	observation at time t					
\mathbf{B}_0	background error covariance matrix					

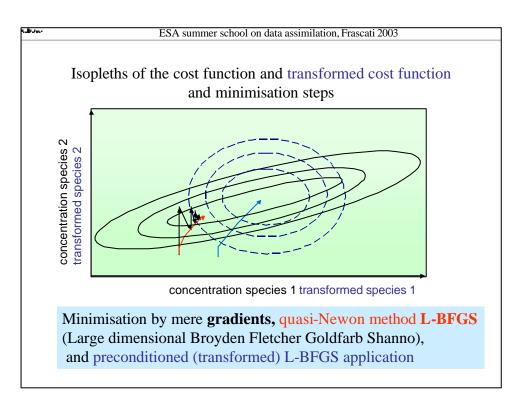


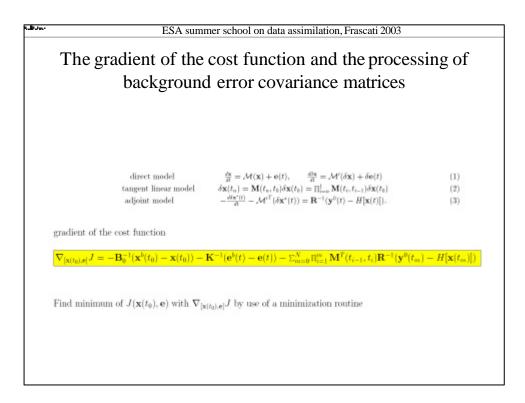


ESA summe	r school on data assimilation, Frascati 2003
Reduced rank	Kalman filter (calculus)
In practice, all calculations can be performed without actually calculating matrices P!	$\Psi := \mathbf{HS}$ $\mathbf{K} = \mathbf{S}^{f} \Psi^{T} (\Psi \Psi^{T} + \mathbf{R})^{-1}$
Positive semidefinitenes is maintained!	$\mathbf{x}'' = \mathbf{x}^f + \mathbf{K}(\mathbf{y}'' \mathbf{H}\mathbf{x}^f)$
	$ \begin{aligned} \mathbf{S}^{a}\mathbf{S}^{aT} &= (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{S}^{f}\mathbf{S}^{fT} \\ &= \mathbf{S}^{f}\left[\mathbf{I} - \boldsymbol{\Psi}^{T}(\boldsymbol{\Psi}\boldsymbol{\Psi}^{T} + \mathbf{R})^{-1}\boldsymbol{\psi}^{T}\right]\mathbf{S}^{fT} \end{aligned} $
	$\mathbf{S}^{vT} = \mathbf{S}^{f} \left[\mathbf{I} - \mathbf{\Psi}^{T} (\mathbf{\Psi} \mathbf{\Psi}^{T} + \mathbf{R})^{-1} e^{T} \right]^{1/2}$
	16



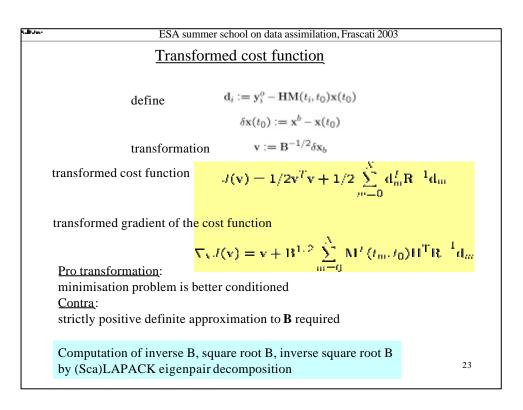




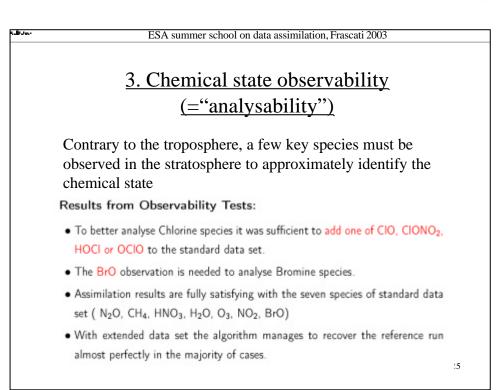


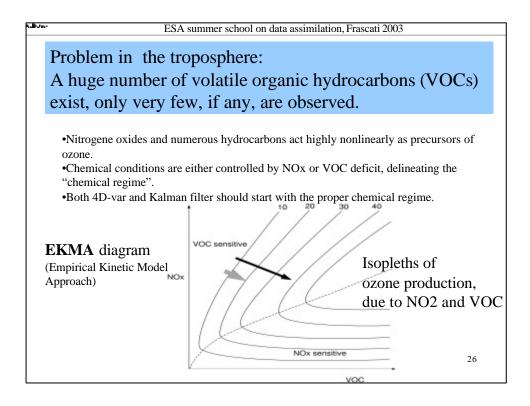
 \mathbf{F} \mathbf{F}

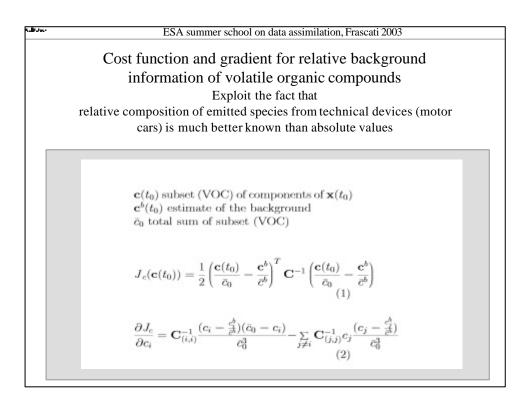
 ESA summer school on data assimilation, Frascati 2003
The Preconditioning of the Minimisation Procedure
3 steps of external preconditioning (1) spatial (horizontal presently) (2) chemical (3) numerical
Procedure:
Transformation by a crudely factorized background error covariance matrix \mathbf{B}_0
Define:
$\mathbf{B}_0 pprox \mathbf{ ilde{B}}_0 := \mathbf{B}_s \mathbf{B}_c \mathbf{B}_n$
Spatial: B _s (Balgovind)
$C(\mathbf{r}) = (1 + \mathbf{r} /L)\exp(- \mathbf{r} /L)$
Chemical: B_c (from identical twin experiments)
for example $\mathbf{B}_{\ell}(O_3, NO) = \text{diag}(10, 1)$
Numerical: \mathbf{B}_n (scaling experiments) $\mathbf{B}_n = \text{diag}(\mathbf{x}_k^{-2})$ or, to ensure positive definiteness $\mathbf{B}_n = \log^2(\text{diag}(\mathbf{x}_k^{-2}))$
standadbar av p
22

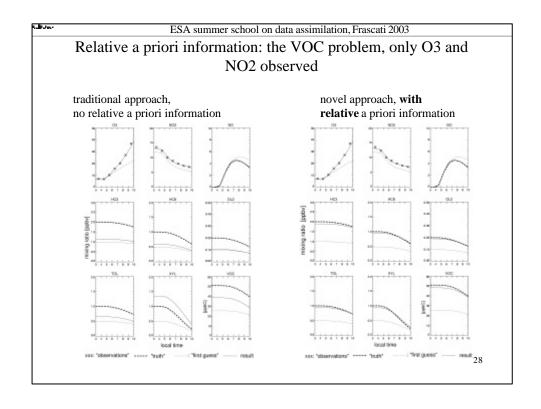


define	Transformed Cost Function $\mathbf{d}_i := \mathbf{y}_i^0 - H\mathbf{M}^T(t_i, t_0)\mathbf{x}(t_0)$ $\delta \mathbf{x}(t_0) := \mathbf{x}^b(t_0) - \mathbf{x}(t_0)$ $\mathbf{v} := \sqrt{\mathbf{B}_0} \delta \mathbf{x}_b$
$J(\mathbf{v})$ transf	formed cost function $= 1/2\mathbf{v}^T\mathbf{v} + 1/2\sum_{m=0}^{N} (\mathbf{d}_i)^T\mathbf{R}^{-1}\mathbf{d}_i dt,$ formed gradient $\mathbf{v}) = -\mathbf{v} - \sqrt{\mathbf{B}_0}\sum_{m=0}^{N} \Pi_{i=1}^m \mathbf{M}^T(t_{i-1}, t_i)\mathbf{R}^{-1}\mathbf{d}_i dt,$
Contr	nisation problem is better conditioned a: v positive $\tilde{\mathbf{B}}_{n}$ required
-	tation of inverse B, square root B, inverse square root B LAPACK eigenpair decomposition









Description of the assimilation result ("analysis") be identified? An experied of the assimilation result ("analysis") be identified? An independent validation possible? And is an improved forecasts? And is an improved forecasts?

* ESA summer school on data assimilation, Frascati 2003		
Assumptions:		
• Gaussian error dis	• Gaussian error distribution assumption sufficiently valid	
• First guess not too approximation mu	o far from "solution" (tangent-linear ist hold)	
• A priori defined e	rror covariances (background, observations)	
Necessary condition for a posteriori validation: adjust B and R such that:	at the minimum: $J_{min} = 1/2d^T ({\bf HBH^T} + {\bf R})^{-1} d$ $d := y - Hx^a$ p number of observations	
Expectation	$\mathcal{E}[J_{min}] = p/2$	
Variance	$\mathcal{V}[J_{min}] = p/2$	

