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chemistry
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Research 
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Special challenges of Special challenges of tropospherictropospheric chemistry data chemistry data 
assimilationassimilation

The following problems prevail:

1. strong influence of manifold processes including 
emissions and deposition

2. spatially highly variable “chemical regimes”
3. chemical state observability (= “analyseability”) 

hampered by manifold hydrocarbon species
4. consistency  with heterogeneous data sources: 

satellite data and in situ observations
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Processes in a complex chemistry-transport model 
(EURopean Air pollution Dispersion model EURAD)

Meteorological  Model  MM5
radiative transfer, winds, temperature, aqueous processes, cloud physics

chemical transformations
Gas phase
aqueous phase

transport
diffusion

aerosols
chemistry
dynamics
•nucleation
•coagulation
•sedimentation
•deliquescence
• ….

anthropogenic
+ biogenic
emissions

CTMCTM

condensation
evaporation
wet deposition
sublimation

dry deposition
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General approach for advanced data 
assimilation systems

• combine consistently tropospheric and surface 
information
– observations with
– tropospheric chemistry models and
– a priory information (climatologies, forcing fields, …)

• to provide an optimal chemical state estimate on a 
regular grid

This invokes the application space-time data 
assimilation algorithms preserving the BLUEBLUE
property (Best Linear Unbiased Estimator)
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Advanced Advanced spatiospatio--temporal methods used in temporal methods used in 
tropospherictropospheric chemistry data assimilationchemistry data assimilation

• 4-dim variational data assimilation (4D-VAR, and versions: 
4D physical space statistical analysis system (Amodei, 1995; 
Courtier, 1997); 4D-var incremental (Courtier et al, 1994))

• reduced complexity versions of the Kalman Filter: Reduced 
Rank Square root KF (RRSQKF, Verlaan and Heemink, 
1997) , ensemble KF (Evensen, 1994), SEEK, SEIK, (Verron
et al., 1999) 

Spacio-temporal BLUEs applied in tropospheric chemistry data 
assimilation:

4D var: (Elbern and Schmidt, 1999, 2001)
RRSQKF (van Loon et al, 2000)

Remark: 3D BLUE algorithm analyses like those from Optimal 
Interpolation, once ingested into a model, do not result in a 
4D BLUE analysis!
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Construction of the  adjoint code

forward model
(forward differential equation)

algorithm
(solver)

code

backward model
(backward differential equation)

adjoint algorithm
(adjoint solver)

adjoint code
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TransportTransport--diffusiondiffusion--reactionreaction equation and itsequation and its adjointadjoint
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1. Strong influence of emissions and deposition1. Strong influence of emissions and deposition

Does it really suffice to optimise the initial concentration values 
in the troposphere? 
No, it does not!

Which other parameters must be optimised to improve analysis 
and forecast skill?
A rule of thumb: parameter with maximal (paucity-of-
knowledge * impact)

With valid Gaußian error characteristics and tangent linearisation 
a more precise formulation can be given:
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Singular value analysis

εε i perturbation vector of potential optimisation parameters: 
initial values boundary values, emission rates, deposition velocities

C norm inducing pos. def., sym. operator at initial time t0 (Mahalanobis)
M tangent linear model
E norm inducing pos. def., sym. operator at optimisation time t1
(P projection operator, extinguishing areas or species outside focus)
λ Lagrange parameter and generalised eigenvalues

unit constraint (scalar product):
maximise
Raleigh quotient:

ómaximise
⇒generalised 

EV problem
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Meteorological parameters
provided by meteorological driver 
models
primary: v,T,p,qx
secondary: Kzz, cloud parameters

Initial and boundary values 
inherent to CTM designEmission rates / deposition velocities

following emission models resting 
on inventories and biogeochemical 
processes, deposition velocities 
mostly vegetation dependent

grid resolution 
control stepwise 
or continuous 
subject to various 
numerical 
techniques

J-val, reaction rates
given by laboratory 
experiments

Which model parameters are amenable to inverse modelling 
based optimisation?

(Which of those parameters maximise the Raleigh 
quotient?)

model
equations
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Synthesis: 
principal error sources to be controlled by inversion

• Meteorological parameters: 2 major error sources are boundary layer 
height (residual layer), and cloud processes (especially quantitative 
precipitation)

• Initial/boundary values: error impact below 2 days in the lower 
troposphere for most pollution conditions, but to be determined anew 
for each run

• anthropogenic emissions:  large impact, less variable than initial 
values, i.e. daily optimisation not justified if not for external reasons 
(working day, Sunday) or weather changes (heating period). 
Imposition of reasonable constraints on the optimisation is advisable 
(diurnal cycle)

Conclusion for tropospheric CTMs: Initial values and emission rates  
should be joint optimisation parameters, although not necessarily 
acting on the same time scale. Separate meteorological data 
assimilation required.
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Hypothesis: 
initial state and emission rates are least known

emission biased model state

only emission rate opt.

only initial value opt.
true state

observations

time

co
nc

en
tra

tio
n

joint opt.



ESA-ESRIN, Frascati, Rome, Italy

18th – 29th August 20037

13

ESA summer school on data assimilation, Frascati 2003

In the troposphere for emission rates the
product (paucity of knowledge*importance)

is high
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Kalman filter, basic equations
(see lecture H. Eskes)
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Reduced rank Kalman filter (basic idea)

Appoximate covariance matrices Pb,a (n x 
n) by a product of suitably low ranked 
matrix Sb,a (n x p),  and p << n . Same 
procedure for the system noise matrix Q 
with T (n x r).

The forecast step remains unchanged.

The forecast error covariance matrix rests 
on 2 x p model integrations only!

The enlargement of p by r enforces 
periodic reductions of columns  (with 
lowest ranked eigenvalues)
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Reduced rank Kalman filter (calculus)

In practice, all calculations can 
be performed without actually 
calculating matrices P!

Positive semidefinitenes is 
maintained!
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2. Spatially highly variable “chemical regimes”2. Spatially highly variable “chemical regimes”

• boundary layer structures are generally fine 
scale as induced by the surface emission, 
deposition and land use texture.

• observational coverage from satellites and in
situ observations is generally coarser than  
model resolution

• elements of “feature assimilation” to be 
introduced to exploit fine grid model 
information for assimilation
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Schematic example of anisotropic and 
inhomogeneous covariances

following Hoelzemann et al. (2001)

Anisotropy and inhomogeneity introduced by a 
generic decorrelation function fµν=1-a|uµ-uν|, 
0<u<1 being an index describing a feature 
strength, here urban emission characteristics vs
rural. 0<a<1 is a sensitivity parameter. The 
Balgovind formula is selected as homogeneous 
and isotropic “carrier” function.

urban rural

2 observation sites
L is radius of influence, r 
distance between sites µ
and  ν , eb is the 
observation error

correlation with L=1
(left) and L=3 (right)
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Isopleths of the cost function and transformed cost function
and minimisation steps

Minimisation by mere gradients, quasi-Newon method L-BFGS
(Large dimensional Broyden Fletcher Goldfarb Shanno),
and preconditioned (transformed) L-BFGS application

concentration species 1 transformed species 1
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The gradient of the cost function and the processing of 
background error covariance matrices
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Computation of inverse B, square root B, inverse square root B
by (Sca)LAPACK eigenpair decomposition

Transformed cost function

define

transformation

transformed cost function

transformed gradient of the cost function

Pro transformation:
minimisation problem is better conditioned
Contra:
strictly positive definite approximation to B required
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Computation of inverse B, square root B, inverse square root B
by (Sca)LAPACK eigenpair decomposition
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3. Chemical state 3. Chemical state observabilityobservability
(=“analysability”)(=“analysability”)

Contrary to the troposphere, a few key species must be 
observed in the stratosphere to approximately identify the 
chemical state

26

ESA summer school on data assimilation, Frascati 2003

Empirical Kinetic Model Approach schemeProblem in  the troposphere:
A huge number of volatile organic hydrocarbons (VOCs) 
exist, only very few, if any, are observed.

Isopleths of 
ozone production, 
due to NO2 and VOC

•Nitrogene oxides and numerous hydrocarbons act highly nonlinearly as precursors of 
ozone. 
•Chemical conditions are either controlled by NOx or VOC deficit, delineating the 
“chemical regime”.
•Both 4D-var and Kalman filter should start with the proper chemical regime.

EKMA diagram
(Empirical Kinetic Model 
Approach)



ESA-ESRIN, Frascati, Rome, Italy

18th – 29th August 200314

27

ESA summer school on data assimilation, Frascati 2003

Cost function and gradient for relative background
information of volatile organic compounds

Exploit the fact that
relative composition of emitted species from technical devices (motor

cars) is much better known than absolute values
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Relative a priori information: the VOC problem, only O3 and 
NO2 observed

traditional approach, 
no relative a priori information

novel approach, with
relative a priori information
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4. Consistency  with heterogeneous data sources: 4. Consistency  with heterogeneous data sources: 
satellite data and insatellite data and in situsitu observationsobservations

following Talagrand (1998) and Desroziers and Ivanov (2001)

Including background information, in situ observations, 
ozone profile retrievals and NO2 column retrievals, 
tropospheric information sources are especially heterogeneous.

Can consistency of the assimilation result (“analysis”) be identified?
What is an improvement in the analysis?
Is an independent validation possible?
What is an improved forecasts?
What is the contribution of individual observation sources?
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Assumptions:
• Gaussian error distribution assumption sufficiently valid
• First guess not too far from “solution” (tangent-linear 

approximation must hold)
• A priori defined error covariances (background, observations)

Necessary 
condition 
for a posteriori
validation:
adjust B and R such 
that:

Expectation

Variance
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The partition of costs in terms of all observations and 
the background at the final analysis

How do the partial costs in the 
cost function divide?

partial costs of observations 
(Ip identity matrix in  
observation space with p observations)

partial costs of background:
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The partition of costs in terms of individual classes of 
information sources zj



ESA-ESRIN, Frascati, Rome, Italy

18th – 29th August 200317

33

ESA summer school on data assimilation, Frascati 2003

Summary
• an outline of special problems of tropospheric

chemistry data assimilation is given, which are not 
prevalent in the stratosphere,

• problems are far from being solved, rather early 
attempts for solution are presented, or only theoretical 
access is shown,

• treatment of aqueous phase and aerosol phase data 
assimilation is still in its infancy, up to now resting 
on crude assumptions and ignoring system proclivity 
to non-Gaußian errors


