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Special challenges of tropospheric chemistry data
assimilation

Thefollowing problems prevail:

1. strong influence of manifold processesincluding
emissions and deposition

2. gpatially highly variable “chemical regimes’

3. chemica state observability (= “analyseability”)
hampered by manifold hydrocarbon species

4. consistency with heterogeneousdata sources:
satellite data and in Situ observations
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Processes in a complex chemistry-transport model
(EURopean Air pollution Dispersion model EURAD)
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General approach for advanced data

assimilation systems
» combine consistently tropospheric and surface
information
— observations with
— tropospheric chemistry models and
— apriory information (climatologies, forcing fields, ...)

* to provide an optimal chemical state estimate on a
regular grid

This invokes the application space-time data
assimilation algorithms preserving the BL UE
property (Best L inear Unbiased Estimator)
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Advanced spatio-temporal methods used in
tropospheric chemistry data assimilation

e 4-dimvariational data assimilation (4D-VAR, and versions.
4D physical space statistical analysis system (Amodei, 1995;
Courtier, 1997); 4D-var incremental (Courtier et al, 1994))

* reduced complexity versions of the Kalman Filter: Reduced
Rank Square root KF (RRSQKF, Verlaan and Heemink,
1997) , ensemble KF (Evensen, 1994), SEEK, SEIK, (Verron
et al., 1999)

Spacio-temporal BLUESs applied in tropospheric chemistry data
assimilation:

4D var: (Elbern and Schmidt, 1999, 2001)

RRSQKF (van Loon et al, 2000)

Remark: 3D BLUE algorithm analyses like those from Optimal
Interpolation, once ingested into a model, do not resultin a
4D BLUE analysis!
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Construction of the adjoint code

forward model ———|  backward model

(forward differential equation) ' (backward differential equation)
algorithm _ adjoint algorithm
(solver) ' = (adjoint solver)

I I

code | S adjoint code
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Transport-diffusion-reaction equation and its adjoint

Tendency Equations
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1. Strong influence of emissions and deposition

Doesit really suffice to optimise theinitial concentration values
in the troposphere?
No, it does not!

Which other parameters must be optimised to improve analysis
and forecast skill?

A rule of thumb: parameter with maximal (paucity-of-
knowledge * impact)

With valid Gaul3ian error characteristics and tangent linearisation
amore precise formulation can be given:

4 18" — 29t August 2003



ESA-ESRIN, Frascati, Rome, Iltaly ENVISAT

Data Assimilation
Summer School

e ESA summer school on data assimilation, Frascati 2003

Singular value analysis

unit constraint (scalar product): (. C)=1
maximise . .
PAT e BTN e
Raleigh quotient: n—.?x(( o [3;- - tr-dodeid
<> maximise 00y = (PN )  EPMC L g —AGc TG =1)
P generalised

EV problem Ty =0=M"{f1 1) P YEPM(1 . fg)e = ACe

e perturbation vector of potential optimisation parameters:

initial values boundary values, emission rates, deposition velocities
C norm inducing pos. def., sym. operator at initial time t, (Mahalanobis)
M tangent linear model
E norm inducing pos. def., sym. operator at optimisation timet;
P proj ection operator, extinguishing areas or species outside focus)
I Lagrange parameter and generalised eigenvalues °
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Which model parameters are amenable to inverse modelling
based optimisation?
(Which of those parameters maximise the Raleigh
guotient?)

Meteorological parameters

Initial and boundary values

Emission rates/ deposition velocities
following~2 :

grid resolution

Jval, reaction rates

I model Y

N .
®  equations

10
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Synthesis:
principal error sources to be controlled by inversion

* Meteorological parameters: 2 major error sources are boundary layer
height (residual layer), and cloud processes (especially quantitative
precipitation)

e Initial/boundary values: error impact below 2 daysin the lower
troposphere for most pollution conditions, but to be determined anew
for each run

« anthropogenic emissions: largeimpact, less variable than initial
values, i.e. daily optimisation not justified if not for external reasons
(working day, Sunday) or weather changes (heating period).
Imposition of reasonable constraints on the optimisation is advisable
(diurnal cycle)

Conclusion for tropospheric CTMs: Initial values and emission rates
should be joint optimisation parameters, although not necessarily
acting on the same time scale. Separate meteorological data
assimilation required.

11
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Hypothesis:
Initial state and emission rates are least known

emission biased model state
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e ESA summer school on data assimilation, Frascati 2003
In the troposphere for emission rates the
product (paucity of knowledge* importance)
ishigh
Emission Rate Optimization
ik cost finketio
Sx(tn), &) —i'xl":"l.l — x(#y))" By (x*tg] — x(8n)} + tleviations from backgronnd initial state
_. 'I-.... [enit] — et 1T K (eyt] — alt]df 4 desviations from a priori smission rate
i |',II,‘ [¥'(t) — H _Jr~-ﬁ|'||:|J R0 — Hxi)]je | moced desiations from oleervations
» Fackeronm state at ¢
m A S e el O
e ) wnission rite Held ot time t
I eIssion rate crror covarianes makrs
H[ ] forward interpolato
vl alservation at time i
By Bawckgronmd error covarianoe matrix
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Kalman filter, basic equations
(seelecture H. Eskes)
x/(4) = M1 4o 1)x(Lio1) + 1y (1)
b m T
P} = M(t;, t;—1)PiM" (¢,4,-1) + Q
xO(1) = x"(t) + Kid;. (1)
K, =P (PR +R) b e RV (2)
and

14

18" — 29t August 2003



ESA-ESRIN, Frascati, Rome, Iltaly

Data Assimilation
Summer School

ESA summer school on data assimilation, Frascati 2003

Reduced rank Kalman filter (basic idea)

Appoximate covariance matrices PP2 (n x T T
n) by aproduct of suitably low ranked P =587, Q=TT
matrix $"2(nx p), and p << n. Same

procedure for the system noise matrix Q

withT (nxr).
f — W™
The forecast step remains unchanged. = Lok
The forecast error covariance matrix rests
on 2 x p mode! integrations only! s/8fT = ms2s*Tm? + TTT

The enlargement of p by r enforces
periodic reductions of columns (with sf = [MS*, T]
lowest ranked eigenval ues)

TN
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Reduced rank Kalman filter (calculus)

npractice, al calculationscan W = HS

be performed without actually

cal culating matrices P! K=s8wiiww! +Rr)-!
Positive semidefinitenesis x" = x' + Ky Hx'}
maintained!

gogel = (1 - KH)S /T

S [T W Ry
s =M T-wiww! +Rry~L 7 B
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2. Spatially highly variable “chemical regimes’

» boundary layer structures are generally fine
scale as induced by the surface emission,
deposition and land use texture.

 observational coverage from satellitesand in
Situ observationsis generally coarser than
model resolution

» elements of “feature assimilation” to be
introduced to exploit fine grid model
information for assimilation

17
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Schematic example of anisotropic and

Inhomogeneous covariances
following Hoelzemann et al. (2001)

urbanrural CesaiScebon DODEST (SHES

" .. Anisotropy and inhomogeneity introduced by a
. rural " generic decorrelation function f,,=1-alu,:u,|,
0<u<1 being an index describing a feature
¢ :: strength, here urban emission characteristics vs
) i rural. O<a<l isasengitivity parameter. The
12 Balgovind formulais selected as homogeneous
: o and isotropic “carrier” function.
1 F} N 0 [ n e [ | T

2 observation sites

- FEGE A TEEMEE 5kl =307 b 1 beigsinbues

“’ L isradius of influence, r ™
.. distance between sitesm

=2 gnd n, g,isthe
:= observation error

=" correlation with L=1
. '-:-; (left) and L=3 (right)
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| sopleths of the cost function and transformed cost function
and minimisation steps

concentration species 2
transformed species 2

concentration species 1 transformed species 1

Minimisation by mere gradients, quasi-Newon method L -BFGS
(Large dimensional Broyden Fletcher Goldfarb Shanno),
and preconditioned (transformed) L-BFGS application

TN
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Thegradient of the cost function and the processing of
background error covariance matrices

dlipect mude = Adix] +alf U5 — M) + delt |
anpent ligwsar menls| Fd Mt dglaxi# I Axl#
arjoint medel LN LS Ry — Hixiel]
radient af the cost function
Viniinned = =B [xMeg] —xitg)) — K" eMt) —alt]) — oh_ ms, BT R ¥ b ] — H[x(tm]])
Finel mimimmom of J1xits) &) with Wi e b e af 8 minimization rontine
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P'rowedupe
Iramsformation by a conclely factoriaed backgronnd ermor covarianee matriz By

Dtime;

Spatial: B, |Balgovind |
Cfrf) =11 + [o|f Lol =|x| f L)
Chemical: B, (fram identical twin experiments)
fowe excample
By NO = diagf HE 1)
Minimerical: B.. {acaliing L ER S IFTTH IR B.. = iliag %, 3
miteiss By = log (ding (3570

o, Lo ensine psdiiv

.
The Preconditioning Problem
Hessian matrix = (analysis emmor covarianee matx)
Vii=By'+H'R'H
the optimum is [linear case)
X — X3 =By~ + HTR-LEHT'VJ
practival prablem
l?-,. [ES :.'_l.'lll'l'.lll_‘.' ill-eoneditioned
Example:
0 prid 25 = 25
mflnenoe madine £ =6
::_i'.'l.'.'\-
conal{ By ) ~ 107
21
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The Preconditioning of the Minimisation Procedure
B sl ol external precooditoong, (1) spatial (horieontal presently [2) ehuenieal il

22
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Transformed cost function

d; i= y7 — HMI{#; fg)x(tg)

define
ax{tg) = xl x{tn)
transformation v =B,
. N
transformed cost function Jiv)—ieviv 4152 Y LR U
w0
transformed gradient of the cost function
X .
T = v+ 1T A TR,
Pro transformation: iskell
minimisation problem is better conditioned
Contra:

strictly positive definite approximation to B required

Computation of inverse B, square root B, inverse square root B

by (Sca)LAPACK eigenpair decomposition 23

TN

Transformed] Cost Function

transformed cost Tunction
fw) =12y v + 125 dy 1 B dddt,

Vediv) = —w — By o _ T My, £ R .

By

Minimsation problem s hetter comditioned

|t I:i!l-'llll.'-l'. positive Ba reauived
Computation of inverse B, square root B, inverse square root B
by (Sca)LAPACK eigenpair decomposition

4
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3. Chemical state observability
(=*analysability”)

Contrary to the troposphere, afew key species must be
observed in the stratosphere to approximately identify the
chemical state

Results from Observahility Tests:

& To better analyse Chlorine species it was sufficient te add cne of CIO, CIONO;
HOC! or OCIO to the standard data set.

# The BrD abservation is needed to analyse Bromine species

o Aszimilation results are fully satisfying with the seven species of standard data
set [ Np0), CHy, HNO3, Hz0, Oy, NOy, BrD)

# With extended data set the algorithm manages to recover the reference run

almest perfectly in the majority of cases
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Problem in the troposphere:
A huge number of volatile organic hydrocarbons (VOCs)
exist, only very few, if any, are observed.

Nitrogene oxides and numerous hydrocarbons act highly nonlinearly as precursors of

ozone.
«Chemical conditions are either controlled by NOx or VOC deficit, delineating the
“chemical regime’.
*Both 4D-var and Kalman filter should start with the proper chemical regime.
N 1 [+] 20 an 40
I . - . A
// S e
EKMA dlmrarn VUL:-\’.‘I'IEII:M‘I':‘-'_. . r J__-"' /.’__,-'
(Empirical Kinetic Model ~~ Isoplethsof
Approach) i B A v Y ozone production,
L due to NO2 and VOC

MO gansibee

26

LTL W, 4
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Cost function and gradient for relative background
information of volatile organic compounds
Exploit the fact that
relative composition of emitted species fromtechnical devices (motor
cars) is much better known than absolute values

oty subsct (VOO of componaents of 30t )
ity ) estimats of the backgrounsd
g botal sum of subaet (VOO

P i P
¥ I felis) e i) o
JAelih == ,J C L ;
24 L&7] [ £y) |
(1)
& o
A = (e 1 (Eg — 5) [e; i
f C'I.llll I 7 —X c-!' 'IJ L i) -
ey : [ JFE e L=
oy
=r

TN
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Relative a priori information: the VOC problem, only O3 and
NO2 observed

traditional approach,
no relative a priori information

novel approach, with
relativeapriori information

wing miks | ppiv]

aEc "DhaEN s IR Wl guasia el I omrembony” === st T “"“28
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4. Consistency with heter ogeneous data sour ces:

satellite data and in Stu observations
following Talagrand (1998) and Desroziers and Ivanov (2001)

Including background information, in Stu observations,
ozone profile retrievals and NO2 column retrievals,
tropospheric information sources are especially heterogeneous.

Can consistency of the assimilation result (*analysis’) be identified?
What is an improvement in the analysis?

Is an independent validation possible?

What is an improved forecasts?

What is the contribution of individual observation sources?

29
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Assumptions:
e Gaussian error distribution assumption sufficiently valid

» First guess not too far from “solution” (tangent-linear
approximation must hold)

« A priori defined error covariances (background, observations)

Necessary

condition at the minimum:

for aposteriori | g T i

validation: Jmin = 1/2d' (HBHY + R)~1d

adius BandRsuch d:=y— Hz"
that: p number of observations

Expectation E[Tmin] = p/2

Variance V[Jmin] = p/2
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partial costs of background:
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The partition of costsin terms of al observations and

the background at the final analysis

How do the partial costs in the JTy =000 4 P
cost function divide?

partial costs of observations L] =12 tr(l,  HK)
(I, identity matrix in
observation space with p observations)

E[IM ] = 172 tr(KH)

31
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The partition of costsin terms of individual classes of
information sources z

objective function as a sum of

various data / information sources
'!\.
Ji{z) = Ej=1Ji(x)
with
J:J;{.r“} — 1,-"2([1}.1' :_J-)T!‘:‘rj;'l(l"_j-:a.— Zj}
; = H;M(t;, f5) combined observation - model
operator

S; information error covariance of class j with
m; elements of information

E[J(z)]) =1/2 (-m.j — tr(F?SJTIFj.PH))

32
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Summary

 an outline of special problems of tropospheric
chemistry data assimilation is given, which are not
prevalent in the stratosphere,

» problemsare far from being solved, rather early
attempts for solution are presented, or only theoretical
access is shown,

* treatment of agueous phase and aerosol phase data
assmilation is still initsinfancy, up to now resting
on crude assumptions and ignoring system proclivity
to non-Gauldan errors

33
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