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Problem : I have a forecast model, how good is it 7
motivation and methodology
model climate
predictive potential
case studies
assimilation
different kinds of data

What is a "good’” model ? It produces data that is consistent with independent verification
data.

— It depends on the application of interest,

— we want good-looking publications and talks,

— BUT, safety & sanity also require that the model be physically sound i.e. not just tuned to

some specific data.

— statistical models are ok if calibration and validation data are independent.

- amodel may fit a dataset and be completely unphysical.
The conditions of usability of the model must be known.

Model validation usually involves generalization hypotheses : period, level, types of weather,
photochemical regime...

These hypotheses often fail in some cases (eruptions, long-term climate drift...).
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METHODOLOGY : EXAMPLES

~ variables : model prognostic ones and well-observed ones

— whole model grid seen as horizontal fields, cross-sections

— timeseries and Hovmoller diagrams, (back-)trajectories

~ run the model over 10-50 times the system’s characteristic times

~ compromise between model run length and number of independent cases

~ be critical of data quality (data monitoring and cross-checks) and model postprocessing
(e.g. reinterpolation, smoothing)

MATHEMATICS OF VERIFICATION
Mathematically, verification = comparison of a distribution of model output p(m) to a distri-
bution of verifying data p(d).

— usual approach : study distribution of errors p(m-d) (good for continuous parameters with
homogeneous etrors)
importance of statistical significance testing (Fischer, Student and Mann-Whitney tests) on
large datasets with small variations.
other approach : study joint distribution of model and data p(m,d)=p(m/d)p(d)=p(d/m)p(m)
(=data stratification vs model or data)
usually studied by contingency tables on discrete events : False Alarm Rate, Hit Rate, efc.
scores on contingency tables : False Alarm Rate, Hit Rate, Equitable Threat Score, Critical
Success Index...
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contingency table

Eventis Event is not
observed observed
Eventis Hit Fase Alarm
forecast
Eventisnot |Miss Correct
forecast Ra eCt| on

 FAR=FA/(FA+CR) false dlarm rate
e HR=H/(H+M) hit rate

terms of PDFs.

Approach 1 : general probability score (Continnous Kanked Probabilistic Score = rms diffe-

rence of model and ; ative PDFs). Rarely used. Most useful : histograms of predicted

vs. observed frequer -ach event = "climate of the PDFs".

Approach 2 :

ssing predefined thresholds as discrete events.
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TESTING THE MODEL "CLIMATE
Question : Is the average model behaviour reasonabl

check broad teatures of model output statistics :

av and ros departures vs the same
statistics from data.

plot the model output and data and look for systematic p inumencal model nose,
dritt, subjective patterns, etc.)

strafify statistics against main causes of variability : latitude, level, season, model forecast
range.

be careful when stratifying against state variables (infroduces statistical biases even if mo-
del is perfect)

let the model run for a long time (systematic errors will be more apparent)
check the model tendencies : are there large non-physical cancellations 7
check the distribution of extreme values (tricky)

check scale dependencies :

spectral or wavelet analysis,

check boundary conditions (imposed but maybe wrong !)

example: climate of model rain=f(range)
Rain (mm/day) April 2000 - May 2003
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TESTING THE MODEL CLIMATE : EXAMPLES
using global atmospheric models :
— vertical N/S cross-sections of state variables and tendencies

average circulation and its variance

~ timeseries of kinetic energy, enstrophy, mass, angular momentum (are there leaks ?)

~ frequency of main circulation patterns and waves (blocking, QBO, MJO, El Nino, sudden
warmings...)

model temperature climate

)
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MEASURING PREDICTIVE POTENTIAL
Does the model beat a trivial climate- or persistence-h: I"u..ll prediction ?
requires verity tions, own analysis, refern nalysis)
rms error over each hc]rl = f tm‘ehaﬂ range, forecast mrlr-.l Gives an advan to models
that underpredict features.
anomaly error correlation = carrelation of fi ‘I{l~ of

climate & alies. Needs struch uu:l big

tendency
need

validating nusing observations is tricky in data-poor areas.
the really usetul predicted features may be difficult to assess using scores = apply subjec-
tive validation {extreme events, simulated satellite images, etc) or geometrical data analysis

{pattern matching, contour extractio

g

forecast scores = f(range)
model s vs radiosondes
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forecast scores, evolution

Pays
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CASE STUDIES

- complementary to average statistical measures of quality
concentrate on a few events of interest : special event or special data (field experiments,
Special Observing Periods)

thorough evaluation of all aspects of the model

compare with results from other teams or models on same case (very useful to locate model
weaknesses)

usually targeted towards some specific processes to help their modelling
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monitoring using an observable (GPS)

Comparaison des délais zénithaux pour la station de Chateaurenard
pour I'épisode du 8/9 septembre 2002
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basic obs'model case study
(ECMWEF wind, aicraft, profilers)
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flooding case study: 2 models, radar, raingauges
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VERIFICATION OF ASSIMILATION SYSTEM (1)
when the model part of a data assimilation that initializes the forecasts.

Forecast verification : a good assimilation should produce good forecasts
altering the model will alter the analyses (usually in a chaotic way, for a long time)

— initial steps of the forecasts will have a nonzero departure from the data (observations or
reference analysis) except when verifying against own analysis

~ verification against own analysis gives an advantage to consistent forecasts : perfect if no
obs is used, usually degraded if more obs are used !
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VERIFICATION OF ASSIMILATION SYSTEM (2)
is quality is directly influenced by the model.
ysis verification : a good a should be a good representation of nature.
the analysis should be reasonably close to observations (within the obs error)
BUT a better fit does not imply a more realistic analysis or a better forecast.
more reliable measure : fit of backgrounds to observations (=very short-range forecast

errors)

measured in variational analysis by the observation term Jo

ideal measure : cross-validation = fit of analysis to non-used data

other aspect : non-physical transients ('spin-up’) in short-range forecasts.

analysis errors can be investigated using forecast error inversion techniques (adjoint sensi-
tivity, error tracking, pseudo-inverse model)

assimilation mon|t0r| ng with multi pIe obs systems
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DIFFERENT KINDS OF OBSERVATTONS

Observations are the most objective data, but sometimes complex to use.

— Conventional routine observations (e.g. World Weather Watch, Global Ocean Observin
System operational networks, Satellites with operational status) : generally easy to acces
in near-real time from data centres.

Acquisition times may be long (preprocessing and transmission)

There are data problems : need for monitoring (check timeseries and general consistency
with model) and rejection of suspect obs.

Raw remote-sensed data : require expertise, care and substantial preprocessing. Need to
talk with a community of instrument experts.

Retrievals of physical parameters from remote-sensed data can be useful but often de-
pendent on nontrivial hypotheses and arbitrary extra information = complex error charac-

teristics.
Research data and special observations : require some specific work but often useful to
validate specific aspects of the model.

— Imagery data : not suited for quantitative use, but essential for subjective validation.

— Computer animation or 3D graphics can help pinpoint features with a complex structure.

eferences :
- Atger, E., 1999, Mon. Wea. Rev., 127, 1941-1953.
- Mason, I, 1982, Aust. Met. Mag., 30, 291-303.
- Murphy, 1977, Mon. Wea. Rev., 105, 803-816.
- recommendations of the World Meteorological Organization for verifications techniques.
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