Calibration

• What we need
• Where we stand
 – On-ground characterization plan
 – In-orbit calibration plan
 – Onboard references
 – Selected and possible external sources
 – Applicable vicarious calibration methods
• What to do
 – Calibration methods performance assessment
 – Matching performances with needs
 – Commissioning plan
 • Specific verification activities
 • Special attention to non calibrated parameters
 – Validation
Calibration needs

Calibration: The process of quantitatively defining the system response to a known, controlled signal.

- Correct or model as many as possible of sensor related error sources in the recorded signal.
- Calibration driven by error classification
 - Drifts: Effect of ageing on components.
 - Harmonic: Cyclic changes of the instrument, wrt orbit, season, solar cycle...
 - Random: Everything else. Not accessible to calibration
- Drifts and Harmonic amplitudes determine intercalibration periods
- Assessment relies on on-ground, in-flight or both
Instrument model

- From correlations to visibilities
 - Amplitude
 - Phase
 - Correlation offset

\[\mu = \frac{1}{H_{12}} \cdot Q \cdot V_{12}(u,v) + \mu_{12\text{off}} \]

- From visibilities to brightness temperatures
 - Antenna patterns
 - End-to-end frequency response

\[V_{12}(u,v) = \frac{1}{[\Omega_1 \cdot \Omega_2]^{1/2}} \int \int T_B(\xi,\eta) \cdot F_{n1}(\xi,\eta) \cdot F_{n2}^*(\xi,\eta) \cdot r_{12}(\xi,\eta) \cdot e^{j2\pi(u_{12}\xi + v_{12}\eta)} \cdot \sqrt{1 - \xi^2 - \eta^2} \, d\xi d\eta \]
Where we stand

- On-ground characterization plan
- In-orbit calibration plan
- Onboard references description
- Selected and possible external sources
- Applicable vicarious calibration methods
On-ground characterisation - 1

• Antenna measurements
 – Radiation Patterns
 • Coupling
 • Phase reference point
 • Physical temperature variations
 – Cross polarisation
 – Switch isolation

• NIR absolute calibration
 – End-to-end frequency response
 – Linearity
 – Stability
 – Dependence on physical temperature: modelling and reliability
 – Can we provide a reliable model of the kind:
 \[
 \text{Signal} = a(T_{\text{phys}}) T_B^2 + b(T_{\text{phys}}) T_B + c(T_{\text{phys}})
 \]
 that we could monitor in time?
On-ground characterisation - 2

- **LICEF**
 - Noise figure
 - End-to-end frequency response
 - PMS response
 - PMS calibration – 4 point concept (based on NIR)
 - Linearity ?

- **Radiometric Sensitivity**

- **CAS**
 - NDN characteristics
 - Sources
 - No monitoring of CAS -> in-depth characterisation and temperature dependence assessment
In-orbit calibration

- Onboard references
 - NIR
 - Absolute calibration
 - LICEF
 - Amplitude
 - Phase
 - Correlators
 - Offset correction
 - FWF verification

- Side effects
 - The many modes of NIR and LICEF operation

- External sources
 - Deep sky
 - Moon
 - Sun glint?
 - NIR
 - Absolute calibration
 - Antenna
 - Gain pattern
 - Instrument
 - Flat target response

- Side effects
 - Earth in back lobes
 - Thermal conditions
Calibration Process

• L0 to L1a
 – NIR depends on deep space and CAS
 – Amplitude calibration relies on NIR and on CAS
 – Quadrature is self-calibrated
 – Phase, FWF relies on CAS.

• L1a to L1b
 – FWF relies on CAS.
 – Antenna patterns is measured on-ground and assumed constant.
Vicarious calibration

• Level 1
 – NIR drifts and biases
 • Statistics over ocean
 • Antarctica
 • Airborne and/or in-situ based measurements
 • Sun glint ?
 – Geo localisation biases and harmonic errors
 • Isolated islands
 • Linear oriented transitions

• Level 2
 – SSS
 – Soil moisture (how to address scale issues ?)
 – How to make sure not to integrate model errors in calibration ?
Validation

- Sea surface networks
 - Wind speed
 - Scale

- Ground Campaigns for soil moisture
 - Scale ++

- SMOS/HYDROS/Aquarius intercomparison: need to ensure “compatibility”
What to do – Open issues

• Assessment of calibration method performances
 – To summarize an end-to-end error budget accounting for all calibration error sources. But need for performance measurements on EM.

• Matching of calibration and performance requirement
 – This is the way to specify frequency and duration of calibration periods
 So far between 3 and 10 calibration periods are assumed.

• Calibration periods/coverage loss trade-off
 – One full orbit per month and short calibration periods (24s and 80s)

• Side effects of ageing
 – How to account for gradual failures?

• Stability of terms inaccessible to calibration need to be verified in orbit: methods to define and verify
 – e.g. Antenna Patterns

• Commissioning phase calibration plan to initialise.

• …