Impact of Polarimetric Dimensionality of Forest Parameter Estimation by Means of Polarimetric SAR interferometry

Jun Su Kim, Seung-Kuk Lee, Konstantinos Papanathanassiou, and Irena Hajnsek
German Aerospace Center
Microwaves and Radar Institute
Polarimetry and Interferometry

- Polarimetry is sensitive to dielectric structure / shape.
- Interferometry is sensitive to height / density.
- Interferometric coherence depends on polarisation.
Coherence Region
-In Complex unit circle

Small decorrelation = high coherence

High decorrelation = small coherence

Coherence Region

Tree height

Quad-pol

Comp-pol

δ
Structure of coherence region
- α-angle dependency

- P-Band
- L-Band
Structure of Coherence region

- **Important γ values and compact-pol**

- Complex eigenvalues are placed in the coherence region and they are foci of boundary.

- Depending on the transmission basis, coherence region changes their shape and position.
Study Area and Datasets

Mawas
- Flat terrain
- Hilly terrain,
- Homogeneous, and Sparse Peat Swamp forest with understory

Sungai Wain
- Hilly terrain,
- Heterogeneous, and Dense Dipterocarp forest
Study Area and Datasets - Interferometric parameters

P-Band Sungai Wain L-Band
The Dependency of δ/κ_ζ as a function of…

1. **Wavelength (λ)**
2. **(Spatial) Baseline (B)**
3. **Polarization Configuration (A)**
 1. Quad Polarisation (Quad)
 2. Compact Pol
 - Tx: Linear (45 deg) Rx: H,V (L1)
 - Tx: Linear (-45 deg) Rx: H,V (L2)
 - Tx: Circular Right Rx: H,V (CR)
 - Tx: Circular Left Rx: H,V (CL)
 3. Dual Pol
 - HH and VH (DH)
 - VV and HV (DV)
 - HH and VV (HV)
4. **Incidence angle (θ)**
5. **Terrain slope (α)**
Dependency on (Spatial) Baseline

Mawas P-Band

Quad-pol

Right Circular

Dual-pol Vertical

B=16m

B=32m
Dependency on Wavelength

Sungai Wain $\kappa_\xi \sim 0.1$

Quad-pol | Right Circular | Dual-pol Vertical

P-Band

L-Band
Dependency on Spatial Baseline

Mawas

<table>
<thead>
<tr>
<th></th>
<th>P-Band</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16m</td>
</tr>
<tr>
<td>02/05</td>
<td>7.50</td>
</tr>
<tr>
<td>05/08</td>
<td>7.00</td>
</tr>
<tr>
<td>08/11</td>
<td>7.30</td>
</tr>
<tr>
<td>02/08</td>
<td>7.10</td>
</tr>
<tr>
<td>05/11</td>
<td>7.00</td>
</tr>
<tr>
<td>02/11</td>
<td></td>
</tr>
</tbody>
</table>

Δ/κ_ζ decreases with wavelength

Δ/κ_ζ independent of baseline
Sungai Wain: Dependency on Spatial Baseline

<table>
<thead>
<tr>
<th>P-Band</th>
<th>14m</th>
<th>28m</th>
<th>42m</th>
<th>56m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>01/02</td>
<td>02/03</td>
<td>02/04</td>
<td>01/03</td>
</tr>
<tr>
<td>L1</td>
<td>6.00</td>
<td>6.40</td>
<td>6.45</td>
<td>4.80</td>
</tr>
<tr>
<td>L2</td>
<td>6.15</td>
<td>6.20</td>
<td>6.20</td>
<td>4.80</td>
</tr>
<tr>
<td>CR</td>
<td>6.10</td>
<td>5.95</td>
<td>6.20</td>
<td>4.50</td>
</tr>
<tr>
<td>CL</td>
<td>5.95</td>
<td>6.35</td>
<td>6.45</td>
<td>4.90</td>
</tr>
<tr>
<td>HH,VV</td>
<td>6.40</td>
<td>6.20</td>
<td>6.65</td>
<td>5.00</td>
</tr>
<tr>
<td>HH,VH</td>
<td>6.30</td>
<td>5.80</td>
<td>6.50</td>
<td>4.80</td>
</tr>
<tr>
<td>HV,VV</td>
<td>5.90</td>
<td>5.80</td>
<td>6.20</td>
<td>4.80</td>
</tr>
<tr>
<td>Avr.</td>
<td>49.7</td>
<td>47.7</td>
<td>48.0</td>
<td>44.2</td>
</tr>
</tbody>
</table>
Dependency on Baseline

Sungai Wain

<table>
<thead>
<tr>
<th></th>
<th>L-Band</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5m</td>
<td>10m</td>
<td>15m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01/02</td>
<td>02/03</td>
<td>03/04</td>
<td>01/03</td>
</tr>
<tr>
<td></td>
<td>02/04</td>
<td>01/04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quad</td>
<td>12.20</td>
<td>9.65</td>
<td>9.70</td>
<td>9.80</td>
</tr>
<tr>
<td></td>
<td>9.75</td>
<td>9.40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\delta/\kappa_\zeta \text{ is about half with compact-pol} \]
Dependency on Incidence Angle

- L0103
 - B=10m
 - B=28m

- P0103
 - B=10m
 - B=28m

- L0204
 - B=10m
 - B=28m

- P0305
 - B=10m
 - B=28m
Dependency on Incidence Angle

- **L0103**
 - **B=10m**
 - **B=28m**

- **L0204**
 - **B=10m**

- **P0103**
 - **B=28m**

- **P0305**
 - **B=10m**
 - **B=28m**
Dependency on Incidence Angle

Mawas

<table>
<thead>
<tr>
<th>P-Band</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>16m</td>
<td></td>
</tr>
<tr>
<td>02/05</td>
<td>5.90(52.5)</td>
</tr>
<tr>
<td>05/08</td>
<td>6.10(50.8)</td>
</tr>
<tr>
<td>08/11</td>
<td>6.10(52.5)</td>
</tr>
<tr>
<td>32m</td>
<td></td>
</tr>
<tr>
<td>02/08</td>
<td>5.20(44.2)</td>
</tr>
<tr>
<td>05/11</td>
<td>4.90(49.0)</td>
</tr>
<tr>
<td>48m</td>
<td></td>
</tr>
<tr>
<td>02/11</td>
<td>3.00(50.0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L-Band</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>6m</td>
<td></td>
</tr>
<tr>
<td>02/05</td>
<td>5.10(54.9)</td>
</tr>
<tr>
<td>12m</td>
<td></td>
</tr>
<tr>
<td>05/08</td>
<td>9.30(39.8)</td>
</tr>
<tr>
<td>18m</td>
<td></td>
</tr>
<tr>
<td>02/08</td>
<td>6.60(57.6)</td>
</tr>
</tbody>
</table>
Dependency on Incidence Angle

Sungai Wain

<table>
<thead>
<tr>
<th>P-Band</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>14m</td>
<td>01/02</td>
</tr>
<tr>
<td></td>
<td>02/03</td>
</tr>
<tr>
<td></td>
<td>02/04</td>
</tr>
<tr>
<td>28m</td>
<td>01/03</td>
</tr>
<tr>
<td></td>
<td>03/04</td>
</tr>
<tr>
<td></td>
<td>03/05</td>
</tr>
<tr>
<td>42m</td>
<td>02/05</td>
</tr>
<tr>
<td>56m</td>
<td>01/05</td>
</tr>
<tr>
<td></td>
<td>04/05</td>
</tr>
</tbody>
</table>

δ/κ is about half in co-polarization.
Dependency on Incidence Angle

Sungai Wain

<table>
<thead>
<tr>
<th>L-Band</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>5m</td>
<td>01/02 8.00 (60.0)</td>
</tr>
<tr>
<td></td>
<td>02/03 8.60 (47.7)</td>
</tr>
<tr>
<td></td>
<td>03/04 7.70 (53.2)</td>
</tr>
<tr>
<td>10m</td>
<td>01/03 8.30 (54.2)</td>
</tr>
<tr>
<td></td>
<td>02/04 9.20 (43.5)</td>
</tr>
<tr>
<td>15m</td>
<td>01/04 10.30 (44.7)</td>
</tr>
</tbody>
</table>

\[\delta/\kappa_\zeta \text{ increases with incidence angle} \]
Dependency on Terrain Slope

\[\frac{\delta}{\kappa} \text{ is more sensitive in P-Band} \]
Dependency on Terrain Slope

Compact-pol perfoms better near 0 slope
Dependency on Terrain Slope

Also along azimuth slope
Conclusions ... from the analysis of the two tropical data sets

- δ/κ_ζ is widely independent on spatial baseline.
 The baseline dependency observed in Sungai Wain is probably due to terrain induced
 decorrelation effects.

- δ/κ_ζ increases with wavelength: at P-band about 20-30% longer than at L-band

- δ/κ_ζ decreases significantly (40-50%) in any partial polarimetric scenario.

 Quad-pol L-band performs better than Compact-Pol P-band !!!

Surprising:
There is no big difference between Compact/Hybrid configurations and Dual-Pol
configurations. This is probably due to the very weak dihedral scattering component in
both test sites.

- δ/κ_ζ increases with incidence angle -> wider ground scattering dynamic in far range.

- The performance of partial-polarimetry degrades in the presence of even weak slopes
 ($\alpha > 2-3^\circ$)

- Compact-polarimetry works better when ground is flat. (Sungai Wain shows smaller
 CP/QP ratio than Mawas)
Impact of Polarimetric Dimensionality of Forest Parameter Estimation by Means of Polarimetric SAR interferometry

Jun Su Kim, Seung-Kuk Lee, Konstantinos Paphathanassiou, and Irena Hajnsek
German Aerospace Center
Microwaves and Radar Institute
Compact Polarimetry
-on Poincaré Sphere

Conventional Polarizations

Compact Polarimetry

Horizontal

Circular Right

Vertical

$\pi/4$ - mode
Compact Polarimetry (Analogy)

H pol obs.

V pol obs.

Compact-pol obs.
Projection Matrix

- **Quad-pol to Comp-pol**

- Definition of scattering vector:

\[
\begin{pmatrix}
S_{hh} + S_{vv} \\
S_{hh} - S_{vv} \\
2S_{hv}
\end{pmatrix}
\]

\[
\vec{k} = \frac{1}{\sqrt{2}} \begin{pmatrix}
S_{hh} + S_{vv} \\
S_{hh} - S_{vv} \\
2S_{hv}
\end{pmatrix}
\]

- Scattering vector of Compact Polarimetry:

\[
\vec{j} = \frac{1}{\sqrt{2}} \begin{pmatrix}
S_{hh} & S_{hv} \\
S_{vh} & S_{vv}
\end{pmatrix}
\begin{pmatrix}
1 \\
e^{i\delta}
\end{pmatrix}
= \frac{1}{\sqrt{2}} \begin{pmatrix}
S_{hh} + e^{i\delta}S_{hv} \\
S_{vh} + e^{i\delta}S_{vv}
\end{pmatrix}
\]

\[
\vec{r} = \frac{1}{2} \begin{pmatrix}
1 & 1 \\
e^{i\delta} & -e^{i\delta}
\end{pmatrix}\vec{k} = \mathbf{A}^T \vec{k}
\]

- Covariance matrix of Compact Polarimetry:

\[
\mathbf{J} = \langle \vec{j} \cdot \vec{j}^* \rangle = \langle \left(\mathbf{A}^T \vec{k} \right) \cdot \left(\mathbf{A}^T \vec{k} \right)^* \rangle
\]

\[
= \mathbf{A}^T \langle \vec{k} \cdot \vec{k}^* \rangle \mathbf{A} = \mathbf{A}^T \mathbf{T} \mathbf{A}
\]
Various projection matrices

- **Linear Transmissions** ($\delta = 0, \pi$)

 $$A^{*T}_{\pi/4} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} : L_1$$
 $$A^{*T}_{-\pi/4} = \frac{1}{2} \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix} : L_2$$

- **Circular Transmissions** ($\delta = \pi/2, -\pi/2$)

 $$A^{*T}_{\pi/2} = \frac{1}{2} \begin{pmatrix} 1 & 1 & i \\ i & -i & 1 \end{pmatrix} : CR$$
 $$A^{*T}_{-\pi/2} = \frac{1}{2} \begin{pmatrix} 1 & 1 & -i \\ -i & i & 1 \end{pmatrix} : CL$$

- **Dual polarizations**

 $$A^{*T}_H = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : DV$$
 $$A^{*T}_V = \frac{\sqrt{2}}{2} \begin{pmatrix} 0 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} : DV$$
 $$A^{*T}_{HV} = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \end{pmatrix} : HV$$
Coherence region (Field of Values)

Complex γ in PolInSAR (How γ varies as w changes?)

$$\gamma = \frac{\bar{w}^* T \Omega \bar{w}}{\bar{w}^* T \bar{w}}$$

where

$$T = \frac{1}{2} \sum_i \left< \vec{k}_i \cdot \vec{k}_i^T \right>$$

and

$$\Omega = \left< \vec{k}_1 \cdot \vec{k}_2^* \right>$$
Interferometric Coherence:

\[
\tilde{\mathcal{Y}}(\tilde{w}_1, \tilde{w}_2) = \frac{< \tilde{w}_1 [\Omega] \tilde{w}_2^+ >}{\sqrt{< \tilde{w}_1 [T_{11}] \tilde{w}_1^+ > < \tilde{w}_2 [T_{22}] \tilde{w}_2^+ >}}
\]

Optimisation Problem:

\[
\tilde{w}_1 = \tilde{w}_2
\]

\[
[T]^{-I}[\Omega_\phi] \tilde{w} = \lambda \tilde{w}
\]

\[
[T] = \frac{1}{2} ([T_{11}] + [T_{22}]), \quad \lambda = -(\lambda_1 + \lambda_2^*)
\]

\[
[\Omega_\phi] = \frac{1}{2} (\exp(i\phi)[\Omega] + \exp(-i\phi)[\Omega]^*)
\]

Coherence Region: \(\forall \phi \rightarrow \lambda_{\text{max}}, \lambda_{\text{min}} \) that have to be connected to provide the boundary of the cr.

Shape and size are characterised by the acquisition and scattering parameters.