Atmospheric correction in presence of sun glint
Application to MERIS
“POLYMER”

François Steinmetz (1)
Pierre-Yves Deschamps (2)
Didier Ramon (1)

(1) HYGEOS Comp., Villeneuve d’Ascq, France
(2) Laboratoire d’Optique Atmosphérique (LOA), Villeneuve d’Ascq, France

MERIS (A)ATSR 2008 workshop, Frascati
Outline

Introduction

Algorithm principle

Results
 Level 2
 Level 3

Comparison with MODIS chl products

Conclusion
The difficulty of sun glint correction

- The sun glint can not be predicted accurately from the wind speed
- Standard atmospheric correction techniques fail when $\rho_{gli} > 0.5\%$

Observation at 865 nm

Estimation of the sun glint from the wind speed
First corrections: correct the TOA signal from gaseous absorption and Rayleigh scattering
\[\rho_{corr}(\lambda) = \frac{\rho_{TOA}(\lambda)}{T_{oz}(\lambda)} - \rho_{mol}(\lambda) \]

Spectral matching of
\[\rho_{corr}(\lambda) \approx c_0 + c_1 \lambda^{-1} + c_2 \lambda^{-4} + \left(T_{\downarrow\uparrow}(\lambda) \rho_w^+(\lambda) \right) \]

Atmosphere + Sun Glint Model
Ocean Water Reflectance Model

2 methods:
- Neural network method
- Iterative mean square minimization method (preferred)
Models

- We model the atmosphere + sun glint signal by a polynomial:

\[
\begin{align*}
 c_0 & \quad + \quad c_1 \lambda^{-1} \quad + \quad c_2 \lambda^{-4} \\
\text{(sun glint, clouds, foam, aerosols) } & \quad + \quad \text{(aerosols (fine mode))} & \quad + \quad \text{(couplings)}
\end{align*}
\]

- Water reflectance \(\rho_w(\lambda)\): based on Morel and Maritorena (2001). Parameters used:
 - Chlorophyll concentration [chl]
 - Suspended matter backscattering coefficient \(Bb_s\)

- 5 parameters are finally retrieved
Principle of the algorithm: remarks

▶ The choice of bands is flexible. We can use all available bands.

▶ Dealing with smile effect
 ▶ variation of the measured wavelength $\rho_{TOA}(\lambda + \Delta\lambda)$
 ▶ the method makes it possible to perform atmospheric correction at exact wavelength $\lambda + \Delta\lambda$
Example of POLYMER level 2: Mediterranean sea, 2003-07-15

MEGS 7.4
algal_1
(masked with HIGH_GLINT)

Reflectance at 865 nm
Example of POLYMER level 2: Mediterranean sea, 2003-07-15

MEGS 7.4
algal_1
(no mask)

POLYMER
[chl]
Example of POLYMER level 2: Gulf of Mexico, 2003-06-01

MEGS 7.4 algal_1
(masked with HIGH_GLINT)

Reflectance at 865 nm
Example of POLYMER level 2: Gulf of Mexico, 2003-06-01

MEGS 7.4
algal_1
(no mask applied)

POLYMER [chl]
(cloud mask disabled)
Example of POLYMER level 2: Sea of Japan, 2004-03-13

Reflectance at 865 nm

Aerosol optical thickness at 865 nm (about 0.5)
Example of POLYMER level 2: Sea of Japan, 2004-03-13

MEGS 7.4 algal_1 (no mask applied)

POLYMER [chl]
Example of POLYMER level 2: Sea of Japan, 2004-03-13

Polynomial coefficient c_0
(corrects spectrally flat components)

Polynomial coefficient c_1
(spectral dependency λ^{-1}, mainly aerosols)
Global coverage increase (Level 3)

MERIS [chl] MEGS 7.4
(masks HIGH_GLINT, ABSOA_DUST, PCD_1_13)

MODIS [chl]
(3 daily level 3 from OC Web)

3 days composite
June 3-5, 2003

Coverage increase with respect to standard product:
about a factor 2

POLYMER [chl]
(with POLYMER cloud mask)
Level 3 parameter: detail

- Sea of Arabia, 3-5 juin 2003, MODIS [chl]
Level 3 parameter: detail

▶ Sea of Arabia, 3-5 juin 2003, MERIS MEGS 7.4 [chl]
Level 3 parameter: detail

- Sea of Arabia, 3-5 juin 2003, POLYMER [chl]
Monitoring dynamic phenomena

Sequences of 3 days composites
June - December, 2006

- Equatorial divergence
- Upwelling offshore Venezuela
Comparison with MODIS level 3 daily [chl] (2003-06-05)

MERIS MEGS 7.4 vs. MODIS

POLYMER [chl] (common with MEGS) vs. MODIS

POLYMER error vs. $\rho_{corr}(865)$

POLYMER [chl] vs. MODIS
Comparison with respect to MODIS: statistics

<table>
<thead>
<tr>
<th></th>
<th>MERIS MEGS 7.4</th>
<th>POLYMER common with MEGS 7.4</th>
<th>POLYMER</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \log_{10}(\text{chl})$ bias stderr</td>
<td>21.2% 24.6%</td>
<td>14.9% 29.5%</td>
<td>16.6% 26.4%</td>
</tr>
<tr>
<td>Number of pixels</td>
<td>9.1×10^5</td>
<td>9.0×10^5</td>
<td>1.75×10^6</td>
</tr>
</tbody>
</table>

(Comparison for latitude between $\pm 20^\circ$)

- **Accuracy of the [chl] retrieval:**
 - compares to MEGS 7.4 algal-1 parameter for low [chl]
 - slightly lower for high [chl]
Conclusion

- An original method to make atmospheric and sun glint correction
- Retrieves the [chl] parameter and water reflectances derived from the model
- Robust to the sun glint and semi-transparent clouds
- Very large increase of the global coverage ($\times 2$)
- Used in near real time by CLS since sept. 1st
- Can be easily applied to other sensors

Prospects

- Optimize the choice of bands
- Validation against in-situ data (reflectances spectrum)
- Try to retrieve water reflectances independently of the water reflectance model?