MERIS land products
LAI, fAPAR, fCover
Principles & validation

F. Baret, M. Weiss, K. Pavageau, D. Béal,
B. Berthelot, M. Huc, J. Moreno, C. Gonzales & P. Regner
Objectives

- Routine estimation of canopy biophysical variables:

 \[f\text{APAR}, \ f\text{Cover}, \ \text{LAI}, \ \text{LAI} \times \text{Cab} \]

 - from MERIS - Top Of Canopy / Atmosphere Reflectances (FR & RR)

- Estimation **algorithm** based on artificial neural networks/RT models

- **Validation by**

 - Spatial and temporal consistency
 - Comparison with other products
 - Comparison with ground measurements
Justification of the principles of the algorithm

Definition of the variables of interest:
- \(\text{LAI} \): currently effective (no aggregation except soil/canopy)
- \(f\text{APAR}_{10h} \): very close to the daily integrated value (clear sky)
- \(f\text{Cover} \) (green elements)
- \(\text{LAI}.\text{Cab} \)

Selection of the algorithm:
- Using coupled atmosphere/surface RT models
- Radiative transfer models used: SAIL/PROSPECT/SMAC
- Inversion technique: neural network
 - Efficient
 - Easy to upgrade
 - Fast to run
- Learning data base representative of the actual cases encountered
The diurnal integral is the closest to the instantaneous values for 10:00 solar time.

Study to be extended over experimental observations (hemispherical photographs, PAR balance) (partly done).

Dates = 80,172,355 ; Lat=65:65 ; LAI = 1-10 ; ALA = 15°-75°
Performances for 10:00 solar time (simulations)
Principles of the algorithms

Prior Distributions
Biophysical Variables V
Geometry

Training Database Generation

V → RTM → R

Neural Network Training

R → ANN

weights and bias

Operational Use

R → ANN → \hat{V}

MERIS Data
R_{TOC}
Geometry

MERIS (A)ATSR user workshop - Frascati September 2005

6/22
Generation of the training data base

Distribution of the radiative transfer model variables

Leaves

Canopy

Atmosphere
Simulation of TOA reflectances

<table>
<thead>
<tr>
<th>#</th>
<th>Centre (nm)</th>
<th>Width (nm)</th>
<th>Potential Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>412.5</td>
<td>10</td>
<td>Yellow substance and detrital pigments</td>
</tr>
<tr>
<td>2</td>
<td>442.5</td>
<td>10</td>
<td>Chlorophyll absorption maximum</td>
</tr>
<tr>
<td>3</td>
<td>490</td>
<td>10</td>
<td>Chlorophyll and other pigments</td>
</tr>
<tr>
<td>4</td>
<td>510</td>
<td>10</td>
<td>Suspended sediment, red tides</td>
</tr>
<tr>
<td>5</td>
<td>560</td>
<td>10</td>
<td>Chlorophyll absorption minimum</td>
</tr>
<tr>
<td>6</td>
<td>620</td>
<td>10</td>
<td>Suspended sediment</td>
</tr>
<tr>
<td>7</td>
<td>665</td>
<td>10</td>
<td>Chlorophyll absorption and fluo. reference</td>
</tr>
<tr>
<td>8</td>
<td>681.25</td>
<td>7.5</td>
<td>Chlorophyll fluorescence peak</td>
</tr>
<tr>
<td>9</td>
<td>708.75</td>
<td>10</td>
<td>Fluo. Reference, atmospheric corrections</td>
</tr>
<tr>
<td>10</td>
<td>753.75</td>
<td>7.5</td>
<td>Vegetation, cloud</td>
</tr>
<tr>
<td>11</td>
<td>760.625</td>
<td>3.75</td>
<td>Oxygen absorption R-branch</td>
</tr>
<tr>
<td>12</td>
<td>778.75</td>
<td>15</td>
<td>Atmosphere corrections</td>
</tr>
<tr>
<td>13</td>
<td>865</td>
<td>20</td>
<td>Vegetation, water vapour reference</td>
</tr>
<tr>
<td>14</td>
<td>885</td>
<td>10</td>
<td>Atmosphere corrections</td>
</tr>
<tr>
<td>15</td>
<td>900</td>
<td>10</td>
<td>Water vapour, land</td>
</tr>
</tbody>
</table>
Stochastic Orthogonal experimental plan

Goal: get a good sampling of the main interactions and the range of variation of each input variable

<table>
<thead>
<tr>
<th>Input variable</th>
<th>Number of classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Date</td>
</tr>
<tr>
<td>Background</td>
<td>B_{a}</td>
</tr>
<tr>
<td>Canopies</td>
<td>LAI / site</td>
</tr>
<tr>
<td></td>
<td>ALA</td>
</tr>
<tr>
<td></td>
<td>HotS</td>
</tr>
<tr>
<td></td>
<td>vCover</td>
</tr>
<tr>
<td>Leaves</td>
<td>C_{ap}</td>
</tr>
<tr>
<td></td>
<td>C_{m}</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>C_{bp}</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>r_{550}</td>
</tr>
<tr>
<td></td>
<td>C_{O3}</td>
</tr>
<tr>
<td></td>
<td>C_{wv}</td>
</tr>
<tr>
<td></td>
<td>P_{atm}</td>
</tr>
<tr>
<td>Total number of cases simulated</td>
<td>73728</td>
</tr>
</tbody>
</table>

36864 18432 Training data base Hyperspecialization Test

Date
4

LAI / site
4

ALA
3

HotS
1

vCover
1

C_{ap}
4

C_{m}
2

N
2

C_{bp}
2

r_{550}
3

C_{O3}
2

C_{wv}
2

P_{atm}
2

Total number of cases simulated
73728
realistic training data base
Theoretical performances

a

RMSE = 0.063
R = 0.954

b

RMSE = 0.071
R = 0.948

c

RMSE = 0.679
R = 0.846

d

RMSE = 31.45
R = 0.886

MERIS (A)ATSR user workshop - Frascati September 2005
Theoretical uncertainties (over test data base)

$fAPAR$ and $fCover$ relatively independent on actual product values

LAI and $LAI.Cab$ depend strongly on actual product values (saturation...)
VALIDATION

Direct validation

TOA:
- Barrax (FR)
- VALERI (RR)

Indirect evaluation

TOA: BELMANIP (CYTTARES) extracts
- Temporal consistency
- Comparison with
 - fAPAR: MGVI, CYCLOPES V2 & MODIS
 - LAI: ECOCLIMAP, CYCLOPES V2 & MODIS
Direct validation over Barrax

- MERIS L1b FR
- LAI TOA_VEG
- Ground measurements: LAI2000
- Upscaling: extraction of pure pixels
Direct validation over Barrax

Quite encouraging results
Some saturation for LAI > 4
Direct LAI validation over VALERI

- RMSE = 2.1
- RMSE = 0.91
- RMSE = 0.85
Direct $f\text{APAR}$ validation over VALERI sites
Validation based on 30 BELMANIP sites
Indirect Evaluation over BELMANIP sites

Fundulea (#317)
ECOCLIMAP Composition: 22% Deciduous Broadleaf, 78% Crops

- MERIS TOA_VEG
- MODIS 8days 1km
- CYCLOPES VGT 10days 1km
- ECOCLIMAP

fAPAR

fCover

MERRIS (A)ATSR user workshop - Frascati September 2005
Intercomparison between products over 29 BELMANIP sites
Indirect Evaluation over BELMANIP sites
CONCLUSION

- First version fully documented of the algorithm
 - Good overall performances
 - Saturation for high LAI (around 4)
- Algorithm soon available in BEAM
 - Getting feedback from users
 - With improved cloud screening
- Improvements foreseen for future version
 - Improved LAI distribution
 - Improved soil data base
 - Streamlining the learning data base by comparison to actual MERIS data
 - Learning on actual MERIS data