Results from a cross-calibration experiment

Jens Nieke*, Masahiro Hori

JAXA Japan Aerospace Exploration Agency
EORC Earth Observation Research Center

Teruo Aoki MRI Meteorological Research Institute
Tomonori Tanikawa University of Tsukuba
Hiroki Motoyoshi Space Service Inc.
Yukinori Nakajima RESTEC

Published in:
Nieke, J., et al., A satellite cross-calibration experiment,

* now affiliated with:
Remote Sensing Laboratories
University of Zurich
CH-8057 Zurich, Switzerland
email: nieke@geo.unizh.ch
General Approach

1. CalVal site 2 x 2 km² located near Barrow, Alaska
2. Ground-truth data: aerosol optical thickness (AOT), snow reflectance measurements etc.
3. Macro site (6 x 6 km²) was used for uniformity check
4. GLI, MERIS, AATSR, SeaWiFS, MODIS (terra, aqua) and AVHRR (N16/17) TOA radiance/reflectance data were taken
5. Sensor TOA radiance/reflectance were compared to Radiative Transfer Code 6S* calculations
Advantages of snow fields in the polar region

- Semi-Simultaneous measurements of polar orbiting satellites
- Minimum correction for atmospheric effects
- Near Lambertian properties of New-Snow
- Same reflectance properties over a large region
- Dry and sunny condition periods in Spring/Autumn
- New-Snow conditions over longer period
Selected Site:

CalVal site is located in the North-East of Barrow.
CalVal site's TOA sensor data was chosen.

Macro site signal was used to make uniformity check.
GLI Snow products around Barrow

Date: April 14

RGB

Cloud flag

BT 11μm

Skycamera

April 26
Barrow observatory (CMDL/NOAA):

Photo from a different day, taken by Bob Stone, Climate Monitoring & Diagnostics Laboratory /NOAA
Spectral BRDF

Spectral albedo

FTIR

Whole sky image
Data Flow Chart for Inter-satellite Comparison

Radiative Modeling

- Radiative Transfer Code (modified 6S):
 - gli.f
 - meris.f
 - seawifs.f
 - avhrr3.f
 - thuillier.f
 -

- Ground Truth:
 - AOT, Snow Albedo, Atm. Conditions

Geo. Information:
- for MERIS, AVHRR (N15-17), SeaWiFS, Modis (T&A), GLI...
- SunAz, SunZ, SatAz, SatZ

TOA radiance

- RT output
- Sensor output
- 14/26 Apr. 2003

- GLI L1B
- AVHRR LAC L1b
- MOD021KM MYD021KM

Sensor TOA relative to modeled TOA assuming same atmospheric conditions
The following satellite data sets were used:

<table>
<thead>
<tr>
<th>Satellite Data</th>
<th>from</th>
<th>14th</th>
<th>26th</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLI</td>
<td>2003</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>MERIS</td>
<td></td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>AATSR</td>
<td></td>
<td>☑</td>
<td></td>
</tr>
<tr>
<td>SeaWiFS</td>
<td></td>
<td>☑</td>
<td></td>
</tr>
<tr>
<td>AVHRR N16,N17</td>
<td></td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>MODIS terra</td>
<td></td>
<td>2x</td>
<td></td>
</tr>
<tr>
<td>MODIS aqua</td>
<td></td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

April 14			
N16	NSS.HRPT.NL.D03104.S2227.E2241.B1319797.GC		
GLI	A2GL10304145709OD2_PV1B0000000.00		
SeaWiFS	S2003104225757.L1A_HUAF		
MERIS	MER_RR__20030414_230804_000001972015_00302_05867_0855.N1		
MODIS_A	GSUB1.A2003104.2250.20031600445561683033		
AHVRR	NSS.HRPT.NM.D03104.S2327.E2340.B0418585.GC		

April 26			
MODIS_T	GSUB1.A2003116.2140.20031541816431250125		
MERIS	MER_RR__1POLRA20030426_215033_000001972015_00473_06038_0513.N1		
AATSR	ATS_TOA_1COLRA20030426_215130_000000862015_00472_06037_0444.N1		
MODIS_A	GSUB1.A2003116.2155.20031541816521250125		
GLI	A2GL10304265709OD2_PV1B0000000.00		
MODIS_T	GSUB1.A2003116.2315.20031541816391250125		
Spectral Response Functions

Spectr. respon. func. in UV-VIS: GLI (cha. 1−9), SeaWiFS (cha.: 1−5), MERIS (cha.: 1−5), AATSR (cha.: 1)

Spectr. respon. func. in NIR: GLI (cha. 10−19), SeaWiFS (cha.: 6−8), MERIS (cha.: 6−15), AATSR (cha.: 2,3)

RSP interpolated to 6S
2.5-nm-spectral intervals

GLI (green)
MERIS (red)
SeaWiFS (black)
Selected Overflights April 14th 2003

<table>
<thead>
<tr>
<th>GMT</th>
<th>Satellite</th>
<th>sensors</th>
<th>SunAZ</th>
<th>SatAZ</th>
<th>SunZ</th>
<th>SatZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>22:35:46</td>
<td>N16</td>
<td>AHVRR</td>
<td>182.59</td>
<td>152.96</td>
<td>61.80</td>
<td>0.78</td>
</tr>
<tr>
<td>22:54:11</td>
<td>Terra</td>
<td>MODIS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>22:57:46</td>
<td>ADEOS-2</td>
<td>GLI</td>
<td>188.68</td>
<td>242.36</td>
<td>61.97</td>
<td>24.09</td>
</tr>
<tr>
<td>23:01:00</td>
<td>Orbview</td>
<td>SeaWiFS</td>
<td>189.89</td>
<td>122.42</td>
<td>62.03</td>
<td>49.47</td>
</tr>
<tr>
<td>23:08:00</td>
<td>ENVISAT</td>
<td>MERIS</td>
<td>191.76</td>
<td>312.13</td>
<td>62.13</td>
<td>31.37</td>
</tr>
<tr>
<td>23:09:00</td>
<td>Aqua</td>
<td>MODIS</td>
<td>192.02</td>
<td>255.86</td>
<td>62.14</td>
<td>34.58</td>
</tr>
<tr>
<td>23:33:00</td>
<td>N17</td>
<td>AHVRR</td>
<td>198.66</td>
<td>314.07</td>
<td>62.61</td>
<td>33.62</td>
</tr>
</tbody>
</table>
TOA radiance (L1B data) April 14th

L1B radiance [W/m^2/sr/um]

wavelength [nm]
Deviation for the April 14th (L1B/Ground-truth)

Nieke et al.

Workshop on Inter-Comparison of Large Scale Optical and Infrared Sensors, ESA/ESTEC, 12/14-Oct-04
Selected Overflights 26 April 2003

<table>
<thead>
<tr>
<th>GMT</th>
<th>Satellite</th>
<th>Sensors</th>
<th>SunAZ</th>
<th>SatAZ</th>
<th>SunZ</th>
<th>SatZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>21:41:00</td>
<td>Terra</td>
<td>MODIS</td>
<td>167.68</td>
<td>103.16</td>
<td>58.08</td>
<td>36.75</td>
</tr>
<tr>
<td>21:52:00</td>
<td>ENVISAT</td>
<td>MERIS</td>
<td>170.79</td>
<td>114.12</td>
<td>57.91</td>
<td>12.42</td>
</tr>
<tr>
<td>21:56:00</td>
<td>Aqua</td>
<td>MODIS</td>
<td>171.93</td>
<td>59.63</td>
<td>57.86</td>
<td>15.00</td>
</tr>
<tr>
<td>22:57:38</td>
<td>ADEOS-2</td>
<td>GLI</td>
<td>189.78</td>
<td>242.52</td>
<td>57.92</td>
<td>24.13</td>
</tr>
<tr>
<td>23:00:00</td>
<td>Orbview</td>
<td>SeaWiFS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>23:19:00</td>
<td>Terra</td>
<td>MODIS</td>
<td>195.83</td>
<td>305.94</td>
<td>58.29</td>
<td>27.17</td>
</tr>
</tbody>
</table>
Deviation for the April 26th 2003
(L1B/Ground\textunderscore truth)
Error analysis for a single inter-comparison

<table>
<thead>
<tr>
<th>Sources</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite sensor absolute calibration</td>
<td>5</td>
</tr>
<tr>
<td>Measurement accuracy</td>
<td>1-3</td>
</tr>
<tr>
<td>- uniformity of the site</td>
<td></td>
</tr>
<tr>
<td>- positioning accuracy, georef accuracy</td>
<td></td>
</tr>
<tr>
<td>Atmospheric modeling</td>
<td>3</td>
</tr>
<tr>
<td>- change of atmospheric conditions</td>
<td></td>
</tr>
<tr>
<td>- atmospheric characterisation</td>
<td></td>
</tr>
<tr>
<td>- correction for viewing angle differences</td>
<td></td>
</tr>
<tr>
<td>- differences in spectr. response funct.</td>
<td></td>
</tr>
<tr>
<td>Total error (RMS)</td>
<td>5-6.6</td>
</tr>
</tbody>
</table>

The error budget of single event comparison is high at about 5-7%, however, the following tendency becomes “interesting”
Deviation for April 14 and 26th 2003
(L1B/Ground_truth)
Results agree well with other GLI cal-methods!
Conclusion

- All analyzed space sensors have similar radiometric performance within 6-7%.
- GLI pre-launch calibration agrees well with cross-cal. results in the VNIR.
- However GLI seems to underestimate the snow target in the UV/blue.
- Comparison results for GLI fit well with other GLI calibration methods.

We would like to acknowledge

NASA (DAAC, SeaWiFS project), NOAA (SAA), ESA & Brockmann, Aeronet/ARM site, C.R. McClain (SeaDAS code) and E. Vermote (6S code)

for the production and distribution of data and codes used in this investigation.
6S input data

- **AOT data**
 - AOT @ 550 nm
 - 14th: 0.0263
 - 26th: 0.235

- **Atmosphere profile**
 - H2O:
 - 14th: 0.6
 - 26th: 0.68 cm
 - O3:
 - 14th: 450
 - 26th: 400 DU

- **Aerosol type (typical)**
 - dust-like components:
 - 14th: 2.85
 - 26th: 2.85 %
 - water-soluble components:
 - 14th: 70
 - 26th: 70 %
 - oceanic components:
 - 14th: 12.85
 - 26th: 12.85 %
 - soot components:
 - 14th: 14.3
 - 26th: 14.3 %

- **Snow site reflectance**

- **Assumptions:**
 - Atmosphere (AOT, type, H\textsubscript{2}O, O\textsubscript{3}) and snow reflectance are constant, each period
 - Cirrus layer (non-visible) at TOA for April 26th (2000m from ARM MPL)
 - Aerosol component for both days is “typical polar aerosol type” at Barrow