SCIAMACHY detectors: Calibration on-ground and in-flight

G. Lichtenberg

SRON - National Institute for Space Research
Utrecht, The Netherlands
CEOS/IVOS workshop on Intercomparison of IR detectors, 12-14.10.04, ESTEC
G. Lichtenberg: SCIA detectors calibration on-ground and in-flight

Outline

✦ Instrument Introduction
✦ Calibration concept
✦ Detector issues
✦ Thermal control system
✦ In-flight performance
✦ Conclusions/Summary
✦ Lessons
Instrument Introduction (I)

- **SCIA is**
 - A scanning Nadir + Limb spectrometer
 - Covering wavelengths from the UV -> VIS -> NIR at moderate resolution
 - Measuring Polarisation with broadband detectors
 - Polarisation sensitive
Calibration Concept (I)

- Calibration and/or instrument design should:
 - Not introduce air-vacuum effects (like it happened in GOME)
 - Remove detector temperature effects
 - Remove polarisation features introduced by the instrument
 - Remove effects of detector material and electronics
 - Avoid instrument features (esp. caused by dichroics) appearing in important spectral retrieval regions
 - Be able to track changes of the instrument in-flight
Calibration Concept (II)

- Calibration of SCIA consist of 4 Types of Measurements:
 - On-ground under thermal vacuum conditions ('OPTEC'), the whole instrument is put in a tank and measured for one mirror incidence angle (=reference angle) and full wavelength grid
 - On-ground under ambient conditions on component level (mirror(s) and/or diffuser combination) for selected angles and selected wavelengths (including the reference angle)
 - In-flight dark, spectral and solar irradiance measurements
 - Monitoring measurements using sun and WLS to account for long-term degradation (see previous talk by M. Wuttke)
Calibration Concept (III)

- In-flight Earth msm
- In-flight calibration (WLS, SLS, Darks, Sun)
- Monitoring
- Polarisation correction
- Radiometric correction
- Calibrated Spectrum
- Scan angle correction

in-flight Measurements
on-ground T/V conditions (instrument)
on-ground ambient conditions (component)
Calibration Concept (IV)

- Assumptions implicit in calibration:
 - Scan angle correction:
 - Polarisation dependence of mirrors/diffusers is the same in air and vacuum
 - No temperature dependence
 - Monitoring:
 - Degradation is independent of scan angle
 - Degradation does not influence polarisation sensitivity
 - Instrument didn't degrade between calibration measurements and begin of in-flight measurements
Detector issues (I)

- 2 types of detectors are employed in SCIA
 - Standard silicon detectors (Reticon):
 - for the UV/VIS range (channels 1-5)
 - read out of 1024 pixel is sequential (leading to some spatial aliasing)
 - These detectors show a 'memory effect', i.e. a read-out shows a positive or negative offset depending on the detector filling of the previous read-out
 - EPITAXX InGaAs detectors with custom designed optics and read-out electronics
 - for the NIR range (channels 6-8)
 - read out is parallel for all 1024 pixels
 - These detectors show non-linearity and bad or dead pixels (i.e. pixel that are not connected or have an anomalous behaviour (telegraph pixel, excessive noise etc.)
Detector issues (II)

Memory effect in channel 3 (in-flight measurement)
Detector issues (III)

Non-linearity (Q. Kleipool, SRON)
Detector issues (IV)

Bad & Dead Pixels in channel 7

Channel 7 dark smear, no corrections
The thermal control system

- The thermal system of SCIA:
 - A passive radiant cooler (SRC) with 2 stages that cools channels 1-6 to around 200 K and channels 7&8 to around 130 K (depending on season)
 - (Manually) controlled detector trim heaters that can raise the temperatures of the detectors up to a certain degree (power limited)
 - Optical bench temperature is controlled by an active feedback loop that holds the temperature within 17.55 +/- 0.3 °C (temperature varies over orbit) and a fail-save heater that keeps the OBM at -35°C in case of instrument shut downs
 - A heater that decontaminates the SRC; detector temperatures reach 280 K during decontamination
In-flight performance (I)

❄ Ice on channels 7&8:
 ❄ Soon after the cool-down of the instrument it was discovered that channels 7&8 lose transmission rapidly
 ❄ The reason is a (water?) ice layer developing on the lens glued on top of the detector
 ❄ Channel 7 and 8 behave very differently for an unknown reason
 ❄ The ice layer thickness can reach 230 um in channel 7 and 600 um in channel 8
In-flight performance (II)

Comparison of Decontaminations (Ch.7)

- Corrections: Dark, solar distance
- Crosses: August '02 NNDEC (86h)
- Triangles: November '02 Flash DEC (8h)
- Diamonds: December '02 NNDEC (351h)
- Asterisks: April '03 NNDEC (30h)
- Squares: May '03 NNDEC (60h)
- Circles: August '03 (375h)
- Blue Crosses: December '03 NNDEC (60+272h)
- Red Triangles: June '04 (240h)

Data adapted from work by B. Lichtenberg (09/04/2004)
In-flight performance (III)

Comparison of Decontaminations (Ch.8)

- Dark, solar distance, dGE/dT
- Crosses: August '02 NNDEC (86h)
- Triangles: November '02 Flash DEC (8h)
- Diamonds: December '02 NNDEC (304h)
- Asterisks: April '03 NNDEC (300h)
- Squares: May '03 NNDEC (60h)
- X's: August '03 (375h)
- Blue Crosses: December '03 NNDEC (66+272h)
- Red Triangles: June '04 (240h)

G. Lichtenberg, SRON-EOS 2004

Generated on Sun Oct 10 12:49:50 2004 by G. Lichtenberg (Endresmehre, Utrecht)
In-flight performance (IV)

Layer Thickness Ch. 7

Time

Wavelength/Pixelnumber

CEOS/IVOS workshop on Intercomparison of IR detectors, 12-14.10.04, ESTEC
G. Lichtenberg: SCIA detectors calibration on-ground and in-flight
In-flight performance (VI)

- Changes in operations and calibration necessary due to ice:
 - regular decontaminations that remove the ice
 - need of dark correction on orbital base (Ch. 8 dark signal consists largely of thermal background that is attenuated by the ice)
 - transmission correction
 - slit function correction
 - ideally: detector temperature correction (the ice on thermal couplings reduces reflectivity on the IR leading to a slow increase of detector temperature of 0.02 K/day)
In-flight performance (VII)
Slit function widening (H. Schrijver/A. Gloudemans SRON)
higher orbit number = more ice
In-flight performance (VIII)

Open points:

- Reason for different behaviour of channel 7&8
- Reason for different behaviour of channel 7 after individual decontaminations (2nd cold trap, ENVISAT operations,...?)
- Optimisation of decontamination procedure:
 - Let the transmission be the driver for decontaminations
 - Try a rapid cool-down to trap ice on a suspected 2nd cold trap in channel 7
The number of Bad & Dead pixel is changing:

- Increase from 55 to 90 (ch6), 280 to 380 (ch7), 180 to 275 (ch8) over the last 8000 orbits
- Reason probably radiation damage (ions)
- Consequence for calibration/retrieval:
 * Dynamic instead of static mask is needed (SRON can generate a mask per orbit)
 * Monitoring of spectral retrieval windows; if too many pixels become unusable, the windows have to be changed
- It is not yet clear if the increase will continue or if it will reach a plateau
In-flight performance (X)
Change of Bad & Dead Pixel Mask channel 8 (Q. Kleipool, SRON)
In-flight performance (XI)

Reflectance comparison UV Model/SCIA (G. Tilstra, G.v.Soest, KNMI)

![Graph showing reflectance comparison](orbit_5973_2003_sahara_state.png)
Conclusions/Summary

- The calibration of SCIA in T/V avoided GOME type problems like air-vaccum effects visible in calibrated spectra
- It is of vital importance to have in-flight calibration capabilities
- The ice layer on the detectors require a lot of adjustments in operations and data processing, after implementation of these, SCIA will reach its full potential
Lessons (I)

♦ My personal wish-list for spectrographs:
 ♦ Don't try to do everything in one instrument, UV/VIS and IR instruments have often different requirements
 ♦ Handle polarisation better (esp. for UV/VIS):
 ★ Measure polarisation on the same wavelength grid as the spectrum or
 ★ Use a polarisation scrambler
 ♦ Build in a cold trap in case of low temperature detectors (even if no problems are predicted)
 ♦ QE & detector temperature:
 ★ Automatic control of temperature or
 ★ Detector material that has a QE independent of temperature
Lessons (II)

- Have enough heater power to anneal detectors
- Measure effect of ion particle impact on detector material, not only γ-radiation
- Instrument has to be characterised in T/V
- Avoid component measurements were possible
- Allow venting of detector assembly (done in SCIA but not in GOME)