The STUN algorithm for Persistent Scatterer Interferometry

1. Theory
2. PSIC4 Processing
3. Conclusions

Bert Kampes, Nico Adam
STUN Algorithm

- **Spatio-Temporal Unwrapping Network (STUN)**
 - 1D temporal + 2D spatial phase unwrapping

- **Goal:**
 - Unwrap the phase in a single-master stack
 - Optimal estimation of displacement parameters

- **Key Features:**
 - Integer Least-Squares (ILS): estimator
 - Variance Component Estimation (VCE): weights
 - Alternative Hypothesis Tests: robust
STUN Processing Steps

- **Point selection:**
 - ~4 PS/km² in reference network
 - ~200 PS/km² for estimation
 - Discard ~99%

- **Reference Network Computation**
 - Optional interferogram trend correction

- **Tie more points to network**

- **Explicit phase unwrapping**
 - Sparse grid Minimal Cost Flow (MCF)

- **Optional Atmospheric Correction**
 - Kriging Interpolation

- **Final Estimation**
Integer-Least Squares (ex. 1)

- 16 samples, 10 years
- Noise $\sigma = 69.2$ [deg]
- Signal = -2.92 [rad/y]

ESTIMATED:
- 67.7 [deg] ($\gamma=0.55$)
- -2.83 [rad/y]

2nd BEST FIT:
- ($\gamma=0.41$)
- -17.9 [rad/y]
Integer Least-Squares (ex. 2)

- 14 samples
- $\sigma = 32.3$
- $b_1 = 5.79$, $b_2 = 1.35$

ESTIMATED:
- 27.1 [deg] ($\gamma = 0.91$)
- 5.75, 1.35

2nd BEST FIT:
- -2.72, -1.35
Integer Least-Squares

- Readily extendible for more parameters:
 - Search of ambiguities solution space
 - Efficient search strategy exist (GPS application)
 - No increase in computation time

- Weighted least-squares:
 - Stochastic model for double-difference phase observations
 - Variance Component Estimation (VCE)

- Software available at Delft University of Technology
 - http://enterprise.lr.tudelft.nl/mgp/
Variance Component Estimation (ex. 1)

- 31 SLC images
- 30 interferograms
- 400 PS points
- 200 arcs (double-differences)
Variance Component Estimation

- “Weights” of the SLC scenes
 - Improves quality of estimated parameters
 - Reduces number of incorrectly estimated ambiguities
 - Automatically detect incorrectly processed interferograms
 - Realistic quality description of estimates

- Iterative estimation procedure

- See paper for equations
• Real data application
Initiated by ESA at *FRINGE 2003*

“Cross-Comparison of Persistent Scattering Processing Techniques”

Marseille, France
Processed Area

- 25 x 40 km²
- Rural area
- Mountainous: 0-1000 m
- Subsidence due to mining
Baseline Distribution

- 80 SLC selected
- No extreme Doppler/large Baseline
Processed Interferograms

- Differential Interferograms
 - SRTM DEM
- Single Master
 - 20460
 - ERS-2
 - March 1999
- Coregistration
 - Geometry
 - Point Targets
- Sorted according to perpendicular baseline
Selected Points

Area:
- rg: 2400
- az: 20000
- ~50 million pixels

Points:
- SCR > 1.5
- ~200,000 PS
- Phase data extracted at sub-pixel peak positions
Variance Component Estimation

- Average of estimated components at ~600 independent arcs

- SLC sigma ~15 -- 45 [deg]

- Accounts for random noise and atmospheric difference signal at arcs of typical length (1250 m)
Reference Network

- Points in reference network selected based on amplitude dispersion index:
 - Expected to be temporally coherent
- Network constructed
 - ~10 arcs per point
- At all arcs, estimate:
 - DEM error differences
 - Displacement rate differences
- Integer least-squares Estimator
 - Weighted
Parameter Integration

- Least-squares adjustment of estimates between PS points
- Yields DEM errors and Displacement rates at the PS points
- Alternative Hypothesis Tests
- Red: rejected arcs
Parameters at Reference Network

- Reference network
- ~1600 PS

- DEM error
- Displacement Rate
Estimated Parameters at PS

- 60,000 PS accepted
- Subsidence
 - -13 mm/y
- Uplift
 - +5 mm/y

- DEM update
- Displacement Rate
Estimated Quality

- A posteriori variance factor
- Unwrapped data
 - Not yet corrected for atmospheric signal
- Precision decreases the further away from reference point (asterisk)
- Subsidence area: this factor is locally larger:
 - Functional model not correct?
Residual Phase

- Residual phase in interferogram
 - DEM error corrected
 - Displacement rate
- This is interpreted as
 - Random noise +
 - Atmospheric signal
- \rightarrow Kriging Interpolation
Structure Functions

- Each panel shows the structure function of the residual phase in an interferogram.

- Atmospheric signal:
 - power-law
 - slope in loglog plot

- Red: estimated slope
 - input for Kriging
Kriging Interpolation

- Residual Phase
- Kriging
Final Estimation

-11.45 mm/year

• Data corrected for estimated atmospheric signal
GIS Interface (geoTIFF)
• Conclusions
Conclusions

- STUN = Spatio-Temporal Unwrapping Network
 - Integer Least-Squares
 - Variance Component Estimation
 - Alternative Hypothesis Tests

- PSIC4 Processing Report
 - Point Selection
 - Reference Network
 - Unwrapping

- Our paper gives more details on theory and displacement models

- Visit our Poster:
 - “DLR’s Results of the PSIC4 Study”
Thank you!