Delta-k Wideband SAR Interferometry for DEM Generation and Persistent Scatterers using TerraSAR-X

Ramon Brcic, Michael Eineder, Richard Bamler, Ulrich Steinbrecher, Daniel Schulze, Robert Metzig, Konstantinos Papathanassiou (German Aerospace Center, DLR)
Thomas Nagler, Florian Mueller (ENVEO IT GmbH)
Martin Suess (ESA)

Supported by the European Space Agency, contract 21318/07/NL/HE
Wideband Interferometry
– Estimate absolute phase without phase unwrapping

Standard Interferometry \(\phi = 4\pi \frac{f_c}{c} \Delta r \)
Delta-k Wideband Interferometry \(\phi_\Delta = \phi_2 - \phi_1 = 4\pi \frac{2f_0}{c} \Delta r \)

Example for TerraSAR-X: \(f_c = 9.65 \text{ GHz}, \lambda_c = 0.031 \text{ m}, B = 150 \text{ MHz} \)
Delta-k with \(b = 50 \text{ MHz} \) subbands: \(f_\Delta = 2f_0 = 100 \text{ MHz}, \lambda_\Delta = 3.1 \text{ m} \)

Height of Ambiguity increased by delta-k scaling factor \(k_\Delta = \frac{f_c}{2f_0} \approx 100 \)
DEM Generation – Salt Lake Salar de Arizaro, Argentina

Salt sea ~3500 m

Mountains ~4700 m
DEM Generation – Salt Lake Salar de Arizaro, Argentina

HoA 7.4 m/cycle

Acquisitions
15.07.2007, 26.07.2007
Stripmap 21 x 60 km
Carrier frequency 9.65 GHz
Range bandwidth 100 MHz
Resolution 1.8 x 3 m
Carrier HoA 7.4 m/cycle

Interferometric processing
36 interferometric looks
Resolution ~ 10 x 17 m

Fullband Coherence
Fullband Interferometric Phase
DEM Generation – Salt Lake Salar de Arizaro, Argentina

HoA 1076 m/cycle

Subbands
- Range bandwidth 33 MHz
- Simulated carrier 67 MHz, 4.5 m
- Resolution 4.5 x 3 m
- Delta-k scaling factor 145
- Delta-k HoA 1076 m/cycle

Interferometric processing
- 36 interferometric looks
- Resolution ~ 13 x 17 m

Map

Fullband Coherence

Raw Delta-k Phase
DEM Generation – Salt Lake Salar de Arizaro, Argentina

HoA 1076 m/cycle

Fullband Coherence

Smoothed Delta-k Phase

Smoothing filter
Resolution ~ 180 x 300 m
DEM Generation – Salt Lake Salar de Arizaro, Argentina

Scaled to Carrier Frequency, HoA 7.4 m/cycle

Resolution
MCF-PU ~ 10 x 17 m
Delta-k ~ 180 x 300 m

Fringe pattern over salt sea attributed to atmospheric delay effects – principally water vapour (see paper)

Comparison to SRTM DEM showed far fewer errors of a smaller magnitude using delta-k

MCF Phase Unwrapping

Delta-k absolute phase
Coherence

Remote Sensing Technology Institute

Institut für Methodik der Fernerkundung bzw. Deutsches Fernerkundungsdatenzentrum

200 m

MCF-PU Control

Raw Delta-k Phase

Smoothed Delta-k Phase

Salar de Arizaro
“lava tongue” feature
- MCF-PU incorrect
- Delta-k correct

SAR Intensity

MCF-PU Solution

Delta-k Absolute Phase

MCF-PU

Delta-k

SRTM C-band DEM
Delta-k with Custom Split Bandwidth Chirps

Standard Chirp

Custom Split Bandwidth Chirp

Transmitted

Lower subband

Upper subband

WASTED ENERGY/DOWNLINK BW

NO WASTED ENERGY/DOWNLINK BW

Received
Delta-k with Custom Split Bandwidth Chirps

- Range bandwidth B
- Subband bandwidth b
- $B/(2b)$ more subband energy/SNR
 - $b = B/3 \Rightarrow$ SNR increase 1.8 dB
 - $b = B/8 \Rightarrow$ SNR increase 6.0 dB

- TSX-1 commanded in experimental mode
- Manual focusing of subband L0 products

Spectrogram, custom chirp stripmap acquisition
range BW 300 MHz, subband BW 37.5 MHz
Delta-k with Custom Split Bandwidth Chirps
- DEM Generation, Salt Lake Salar de Uyuni, Bolivia

Acquisitions
08.03.2008, 30.03.2008
Stripmap 8.7 x 83 km
Carrier frequency 9.65 GHz
Range bandwidth 300 MHz
Carrier HoA 28 m/cycle

Subbands
Range bandwidth 37.5 MHz
Resolution 4 x 3 m

Interferometric processing
36 interferometric looks
Subband resolution 6.7 m x 14 m

Salt sea ~3650 m
Mountains ~5500 m

Delta-k Phase
Delta-k processing
Delta-k scaling factor 37
Delta-k HoA 1027 m/cycle
Resolution 64 x 240 m

Wikipedia

Wideband Persistent Scatterer Interferometry (PSI)

- PSI provides accurate height and deformation estimates for a single PS relative to a reference point.
- Combines 100s – 1000s of PSs in a network to estimate all topographic and deformation parameters simultaneously (spatial phase unwrapping).
- Phase unwrapping → unwrapping error & error propagation.
- Delta-k can provide height estimates without phase unwrapping:
 - No possibility of error propagation.
 - Simple method, no network required → little computational complexity.
- Explore theoretical / practical aspects of delta-k for PSI.
Wideband PSI – Interferometric Stack Description

- 25 x 300 MHz HS acquisitions
 22.11.2007 – 31.03.2009
- Subband bandwidth \(b = 100 \) MHz
 Delta-k scale factor \(k_\Delta \approx 48 \)
- 24 slaves coregistered to common master
- Focus on Eiffel tower - many strong scatterers
Wideband PSI – Theory

- Differences to DEM generation / distributed scatterers
 - Interested in a single PS only → do not smooth delta-k phase
 - SCR << SNR → performance dependent on SCR not SNR

- Optimal subband bandwidth still $b = B/3$

Equation:

$$\frac{1}{\sqrt{2\pi}} \frac{f_C}{B} \frac{1}{1 - b/B} \frac{1}{\sqrt{SCNR}} [\text{cycles}]$$

Graph:

- SNR > 33 dB: 10⁴ pixels
- SCR > 33 dB: ~0 pixels

Parameters:

- $f_C = 9.65 \text{ GHz}$
- $B = 300 \text{ MHz}$
- $b = 100 \text{ MHz}$

Legend:

- SNR
- SCR

- [dB]

Note:

$\frac{1}{4}$ cycle

33 dB
Wideband PSI –
Conventional PSI Processing

- GENESIS-PSI developed at DLR, IMF

- Involves many complicated steps including:
 PS detection, generation of reference network and arcs, lambda method for estimation on arcs, SVD network inversion

Reference Network PSs and Arcs
Wideband PSI –
Single Delta-k Interferogram Height Estimate

- Obtain height estimate by scaling delta-k phase from a single delta-k interferogram with delta-k HoA
- Maintains temporal resolution
- Increase in $\sigma \approx \sqrt{2k_\Delta} \approx 68$
- Only possible for very strong scatterers

23 m/cycle

1024 m/cycle

$P(y|x, M)P(x|M)$
Wideband PSI –
Single Delta-k Interferogram Height Estimate

- Reduce error in single delta-k interferogram height estimate by smoothing delta-k phase as for DEM generation
- Only intended for quick and simple validation
- Loss in resolution (~16 x 21 m) defeats purpose of PSI where focus is on single scatterers

23 m/cycle

1024 m/cycle
Wideband PSI –
Least Squares Delta-k Height Estimate

Phase \propto height through height-to-phase ratio, perform LS linear regression for single pixel

$$\phi_\Delta[k] = h2 p_\Delta[k] \times h, \quad k = 1, \ldots, K$$

- More accurate and robust estimates
 - Atmospheric error averages out over stack
 - Factor reduction in $\sigma \approx 2.3$

- Loss of temporal resolution

- Amend regression model for time varying deformation? deformation $\sigma \approx$ deformation
 Difficult for single PS – must average over several PSs

23 m/cycle
Conclusion

- Wide bandwidth of TerraSAR-X allows use of delta-k absolute phase estimation without error prone phase unwrapping

- DEM Generation: Delta-k can be used to validate / support phase unwrapping, especially if custom chirps are used to increase the SNR

- PSI: Application limited to only the strongest PSs. As system bandwidths increase and SCRs decrease, delta-k for PSI will become more attractive.