First Climatology of Polar Mesospheric Clouds from GOMOS / ENVISAT stellar occultation instrument

Kristell Pérot,
Alain Hauchecorne, Franck Montmessin, Jean-Loup Bertaux

LATMOS
Laboratoire ATmosphères, Milieux et Observation Spatiale
Verrières Le Buisson - France

ESA Atmospheric Science Conference
Barcelona, Spain, 7-11 September 2009
Basic knowledge on Polar Mesospheric Clouds

PMC detection algorithm

First results
Polar Mesospheric Clouds (PMC): Clouds at the edge of space

Location: high latitude summer mesopause, the coldest region of the atmosphere: \(T \leq 140K \)

Average altitude = ~83 km → the highest clouds in the Earth’s atmosphere

Composed primarily of water ice particles

Also called noctilucent clouds (NLC), when observed from the ground

Extremely small optical depth, of only \(10^{-6} \) to \(10^{-4} \)

More and more frequent and bright

Occurrence at lower latitudes than ever before

→ link to the long-term global change in the mesosphere?
GOMOS Fast Photometers

PMC analysed using exclusively the **2 fast photometers** for the moment:

- Sampling frequency = 1 kHz
- Spectral bands : **470-520 nm** and **650-700 nm**
- Vertical resolution < 1 km
- Measurement during day time:

![Diagram showing GOMOS pointing direction, star direction, tangent point, and polar orbit.](image)
Signal measured by GOMOS photometers
(on the day side only)

Without PMC:

\[S_{meas}(z) = S_{star}(z) + S_{molec}(z) \]

With a PMC along the line-of-sight:

\[S_{meas}(z) = S_{star}(z) + S_{molec}(z) + S_{PMC}(z) \]
PMC detection algorithm

Goal: to isolate any PMC signature

Main detection criterion:
\[\chi^2 > \chi^2_{\text{threshold}} \] (for the 2 photometers)

Algorithm applied to all GOMOS measurements from 26/08/2002 to 04/07/2006:

\[\sim 200,000 \text{ events} \] processed

Verification of a great number of detections, and correction if necessary

In the end: Very accurate method

→ Almost 10,000 PMCs detected!

Very rich data set for further studies
Global PMC maps: Example of 2 PMC seasons in 2003 and 2004

- All GOMOS measurements
- PMC observations

Very good spatial and temporal resolution,
but important interhemispheric difference in the observation distribution
Results of GOMOS data set analysis: General representation

Observations distribution

PMCs location

- PMC location:
 - At High latitudes
 - During local summer

- Very good visualization of the geographical and temporal coverage

- 2003 and 2005:
 - Instrument problems → Data loss

PMC Frequency:

- Frequency of occurrence calculated on a local level:
 - In each square of 5 days by 5° lat

- Very quick variation

- At first glance:
 - PMCs more numerous in the North than in the South
 PMC detection frequency as a function of time

- Frequency calculation:
 - 2 weeks time bins
 - throughout 4 years
 - considered latitudes: ± [65;75]°

- A PMC season:
 - ~ 3 months period during local summer

- A great deal of interannual variability

- PMCs more frequent in the North, but interhemispheric differences are strongly dependent on observation distribution
PMC altitude

Determination:

- Cloud height defined as the tangent altitude corresponding to the highest peak of the PMC signature in the signal

Distribution of output values:

- for ~ 95% of the observations:

 \[80 \text{ km} < z_{\text{PMC}} < 86 \text{ km} \]

- Median value:

 = **82.7 km** in the North
 = **83.2 km** in the South

- Clouds slightly higher in the southern hemisphere (~ 500 m)
Latitudinal variation of PMC altitude:
Comparison to LIMA

LIMA model
- SH altitude > NH altitude
 - difference ~ 1km
- increase with latitude
 - with a slope ~40m/deg for both hemispheres
 - smaller at high latitude

GOMOS
- SH altitude > NH altitude
 - difference ~ 500m
- increase with latitude
 - with a slope ~48m/deg in the NH
 - ~20m/deg in the SH
 - independent on latitude

Lübken et Berger, 2007
Seasonal variation of PMC occurrence: Comparison to ALOMAR

ALOMAR RMR lidar

11 years of data: 1997 → 2007

maximum occurrence frequency:

52 %
23 days after solstice

GOMOS

4 years of data: 2002 → 2006

maximum occurrence frequency:

82 %
23 days after solstice

Fiedler et al., 2009
Seasonal variation of PMC altitude: Comparison to ALOMAR

<table>
<thead>
<tr>
<th>ALOMAR RMR lidar</th>
<th>GOMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum altitude: 83 km 30 days after solstice) but polynomial shape less marked</td>
<td>Minimum altitude: 82.3 km 17 days after solstice</td>
</tr>
<tr>
<td>Mean seasonal variation < 1 km</td>
<td>Mean seasonal variation ~1.4 km</td>
</tr>
</tbody>
</table>

Fiedler et al., 2009
GOMOS: Very accurate PMC detection algorithm and very rich PMC data set, but still scarcely exploited.

Outlook: a Comprehensive Study of Noctilucent Clouds

To perform the vertical inversion:
- more accurate altitude values
- Vertical thickness
- Geometric extent of clouds

To use GOMOS spectrometers:
- Size of cloud particles

To extend these results to today and in the future:
- Long term PMC data record:
 - Long term trend in cloud frequency?
 - Dependance on solar activity?

Project for a comparative study: GOMOS / LIMA and GOMOS / ALOMAR