Measuring atmospheric CO$_2$ with SCIAMACHY using Full Spectral Initiation (FSI) WFM-DOAS

Michael Barkley, Alan Hewitt and Paul Monks
EOS, University of Leicester, Leicester, UK

Udo Frieß
Institute of Environmental Physics, Heidelberg, Germany

R. L. Mittermeier and H. Fast
Meteorological Service of Canada (MSC), Ontario, Canada

S. Körner and M. Heimann
Max Planck Institute for Biogeochemistry (MPI-BGC), Jena, Germany

Richard Engelen
European Centre for Medium-Range Weather Forecast, Reading, Uk
Outline

• How do we measure CO$_2$?
 - The FSI WFM-DOAS algorithm
• “Validation”
 - Comparison to ground based FTIR data
 - Comparisons to the TM3 chemistry transport model
 - Comparisons to AIRS
• Summary
The FSI approach & algorithm

- **Why do we want to measure atmospheric CO$_2$?**
 - Help identify surface sources/sinks and reduce uncertainties in the carbon cycle fluxes

- **How do we measure atmospheric CO$_2$?**
 - WFM-DOAS retrieval technique (Buchwitz et al., JGR, 2000) designed to retrieve the total columns of CH$_4$, CO, CO$_2$, H$_2$O and N$_2$O from spectral measurements in NIR made by SCIAMACHY
 - Least squares fit of model spectrum + 'weighting functions' to observed sun-normalised radiance
 - We use WFM-DOAS to derive CO$_2$ total columns from absorption at ~1.56 µm

- **Key difference to Buchwitz’s approach:**
 - No look-up table
 - Calculate a reference spectrum for every single SCIAMACHY observation i.e. to obtain 'best' linearization point - no iterations
 - See “Measuring atmospheric CO$_2$ using Full Spectral Initiation (FSI) WFM-DOAS”, Barkley et al., ACPD, 6, 2765-2807, 2006
 - Computationally expensive 😞
SCIAMACHY
Spectra, geolocation, viewing geometry, time

Cloud Filter
SPICI (SRON)
(Krijger et al, ACP, 2005)

'A priori' Data
CO₂ profiles taken from 2003 climatology (Remedios, ULeic)
ECMWF: temperature, pressure and water vapour profiles
'A priori' albedo - inferred from SCIAMACHY radiance as a f(SZA)
'A priori' aerosol (maritime/rural/urban)

Calibration
Non-linearity, dark current, ppg & etlaon

SCIATRAN
(LBL mode, HITRAN 2004)
(Courtesy of IUP/IFE Bremen)

Reference Spectrum + weighting functions
(CO₂, H₂O and temperature)

SCIAMACHY Spectrum (I/I₀)

Raw Spectra

I₀ - Frerick (ESA)
I - Calibrated Spectra

WFM-DOAS fit

CO₂ Column
(Normalise with ECMWF Surface Pressure)
Accept only: Errors <5%, Range:340-400 ppmv

Process only if: cloud free, forward scan, SZA <75°
Example FSI spectral fit

- Good sensitivity to CO$_2$ concentration
Comparisons to ground based FTIR data

- FTIR spectrometer based at Egbert, Canada
 - Location: 44.23°N, -79.8°E Altitude: 251 m
 - Accuracy of CO₂ columns [molec/cm²]: ± 8.9%
- During 2003:
 - 74 FTIR measurements
 - 5150 valid FSI retrievals
 - Large grid: ±10.0° lon, ±2.5° lat of station
 - Small grid: ±5.0° lon, ±2.5° lat of station
- Compare FSI columns to 3rd order polynomial fit to FTIR data (see Dils et al., ACPD, 2005)
- Normalize FTIR with ECMWF pressure
 - Compare to 'final' FSI product
WFM-DOAS CO$_2$ vs FTIR

FSI CO$_2$ vs FTIR

Retrieval algorithm	No. of retrievals	Yearly Bias [%]	σ Bias [%]	Yearly Bias [%]	σ Bias [%]
FSI | 5150 | -4.1 | 3.0 | -4.0 | 3.0
WFM-DOAS | 2232 | -12.0 | 7.4 | -11.3 | 5.7

WFM-DOAS CO$_2$ results presented in Dils et al, ACPD, 2005.
Comparisons to the TM3 model

The TM3 model

- Atmospheric transport: TM3, driven by NCEP meteorological data
 - Fossil fuel CO2 emissions:
 - Ocean air-sea fluxes:
 - Terrestrial biosphere:

Comparison approach

- Model adjusted for optimal match with in situ observations at the South Pole
 - i.e. calibrated
- Model is sampled at times & locations of observations
- SCIA/FSI averaging kernel has been applied to model data
- FSI/TM3 retrievals averaged onto 1°x1° grid
 - Time series of monthly scene averages
 - Spatial distribution
Correlation between time series typical greater than 0.7
(Note: No scaling of FSI data)
Typical -2% bias in FSI yearly means & -2% difference
(though Gobi Desert → -1%)
Bias of TM3 to FTIR data (using same method) ~ -2%
Assuming model & FTIR correct:

Bias of approx. -4% of FSI CO₂ to 'true' CO₂
Comparison of SCIA vs AIRS
SCIA vs AIRS Time Series

- For North America 2003:
 - SCIAMACHY
 - AIRS

- CBL \rightarrow 396 m TV Tower near Park Fall, Wisconsin

- FT \rightarrow Aircraft flights near Carr, Colorado

(Hurwitz et al, J. Atmos Sci., 2004)
Can we learn anything?

- Greater CO_2 uptake by forests compared to crops & grass plains?
- Identification of sub-continental CO_2 sources/sinks?

ESA Atmospheric Science Conference 8-12 May 2006
Summary

• Full Spectral Initiation Algorithm \(\rightarrow\) use 'a priori' data
• Encouraging first results...
 - Good agreement with FTIR station at Egbert (bias -4%)
 - Good agreement with TM3 model (more uptake in summer)
 • “Comparisons between SCIAMACHY atmospheric CO\(_2\) retrieved using (FSI) WFM-DOAS to ground based FTIR data and the TM3 chemistry transport model”, Barkley et al., submitted ACPD, 2006.
 - Good agreement with AIRS CO\(_2\)

...but still a long way to go...
• Improve
 - ‘A priori data’ (e.g. use TM3 CO\(_2\) profiles ?)
 - Calibration
 - Aerosols \(\oplus\) (e.g. Houwelling et al, 2005)
 - Cloud contamination
 - Dual retrieval with Oxygen (O\(_2\)) ?
 - \(\text{CO}_2\ [\text{ppmv}] = \left(\frac{\text{CO}_2}{\text{O}_2} \right) \times 0.295\)

• Can we measure atmospheric CO\(_2\) from space?
 - Yes !
 - First (tentative!) steps to identify surface sources/sinks and to provide modellers with CO\(_2\) satellite data
2nd Example Scene: Siberia