Comparison of Three Simplified Algorithms for Atmospheric Corrections of MERIS Data over Land

Jürgen Telaar, Maria von Schönermark
Institute of Space Systems, University of Stuttgart, Pfaffenwaldring 31, 70550 Stuttgart, Germany

Modified Ångström Algorithm (A)
Assumptions:
- Clear atmosphere
Procedure:
- Modeling of the physical phenomena, i.e. Rayleigh scattering, absorption due to water vapor and ozone, as well as aerosol scattering and absorption, using climatological data
- The atmospheric correction is performed for all MERIS channels except 11 (O2) and 15 (H2O)

Modified Clear Water (B) / Dark Vegetation Method (C)
Assumptions:
- Reflectance of clear water or dark vegetation is known
- Atmospheric properties do not vary significantly in the scene
Procedure:
- Estimate the key atmospheric parameters to calculate the radiative transfer as a function of the difference between measured (TOA) reflectance and ground reflectance of clear water or dark vegetation and of the sun and observer geometry
- Apply the same correction for the entire scene
- The atmospheric correction is performed for all MERIS channels except 11 (O2) and 15 (H2O)

RGB: MERIS-channels 7, 5 and 3: λ = 665, 560 and 490 nm

Results for southern Germany

<table>
<thead>
<tr>
<th>Method</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| Modified Ångström | • Modeling of physical phenomena
• Takes into account ground level elevations
• No information concerning surface reflectance required | • Valid only for low haze conditions |
| Modified Clear Water | • Very fast
• Accurate for the NIR | • Requires knowledge of water signature (larger uncertainties at visible wave length)
• Valid only if atmospheric conditions above clear water and the rest of the scene are very similar |
| Modified Dark Vegetation | • Very fast
• Accurate for the visible wave length range | • Requires knowledge of dark vegetation signature
• Extrapolation necessary for NIR channels
• Valid only if atmospheric conditions above dark vegetation and the rest of the scene are very similar |