AN OBJECT-BASED APPROACH FOR WETLAND HABITATS INVENTORY AND ASSESSMENT USING ALOS AVNIR-2 AND FIELD DATA

Moschos Vogiatzis (1), Christos G. Karydas (1), Thomas K. Alexandridis (1), Nikolaos Silleos (1), and George C. Zalidis (2)

(1) Lab of Remote Sensing and GIS, Faculty of Agronomy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece, Email: mvogiatz@ktimatologio.gr
(2) Lab of Applied Soil Science, Faculty of Agronomy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece, Email: zalidis@agro.auth.gr
Background

- Habitat fragmentation and destruction
 - impacts on biodiversity
 - severe economic, biological, societal and ethical consequences

- Habitats Directive 92/43/EEC
 - conservation of natural habitats
 - establishment of a Natura 2000 network
Habitats mapping in Greece

- Identification and mapping of habitat types in Greece (2001)
- GlobWetland (www.globwetland.org)
- WETMUST (wetmust.archimed.gr)
Methods for habitats mapping

- Transects, intensive fieldwork
- Photo-interpretation and digitizing
- Pixel based automated classification (spectral)
- Object based classification (spectral, contextual)
Landscape ecology

- The **structure of landscape** as an entity with attributes of regrouping and dynamics embedded in the character of its smaller elements can be expressed by the hierarchy theory.

- Research challenge:
 - optimise the temporal and spatial **resolution** of data-layers, for targeted organisms or communities
 - maximize the amount of **information** extracted from each data-layer
 - intelligently **combine** information from data-layers of different spatial and/or temporal resolution

taken from Barnett and Blaschke, 2003
Hierarchy theory

- Decomposition
- Objects on a scale are decomposition results, apparent as separable entities
- Technologically: hierarchy theory and multi-scale approach can be combined in object-based image analysis (OBIA)
Aim

- Evaluate object-based image analysis techniques for species and habitat mapping
 - ALOS AVNIR-2 image
 - Appropriate data sampling for a hierarchically structured nomenclature
- Examine three scale levels
 - species scale
 - habitats scale
 - general land cover scale
Study Area
Hierarchical Classification Scheme
Sampling Design and Plot Distribution

- Stratified proportional allocated sampling design based on existing Natura 2000 habitats’ boundaries (strata)
- Random sample plots distribution (137)
Plot Configuration

- Basic sampling unit: 10m x 10m
- Corresponds to image pixel resolution
- A cluster of 9 adjacent sampling units selected for inventory and assessment at each plot
Key parameters surveyed

- Land cover/land use types as well as their percent cover per sampling unit,
- Number, diameter and height, as well as features of the cover of all trees above a specified diameter to characterize the structure of the forested wetland,
- Ground vegetation, with special reference to all rare species,
- Environmental disturbances (pollution, fire, clearings, etc.).
Methodology

- Object-based image analysis (OBIA)
 - 1st step: Segmentation
 - 2nd step: Classification
 - Interrelated (common classification strategy)
OBIA-Segmentation

Segmentation:
- is **local heterogeneity minimisation** of all the potential image objects on a specific scale
 - Scale parameter: \(f \)
 - Spectral heterogeneity
 - Shape heterogeneity
- can be applied on different scales
 - Objects on higher scales include objects of lower scales

\[
f = w \cdot h_{\text{spectral}} + (1 - w) \cdot h_{\text{shape}}
\]

\[
h_{\text{spectral}} = \sum_{i=1}^{b} w_i \sigma_i
\]

\[
h_{\text{shape}} = \frac{l}{\sqrt{n}}
\]

taken from Karydas et al, 2005
OBIA-Hierarchy

- **Inheritance** hierarchy
 - refers to the physical relations between the classes
 - class descriptions defined in parent classes are passed down to their child classes
 - helps to reduce the necessary number of inputs and better control class descriptions.

- **Groups** hierarchy
 - refers to the semantic relations between classes
 - child classes of parent classes allows for grouping classes irrespectively if they contain very different feature descriptions.
OBIA-Classification

- OB Classification is a form of supervised classification
 - Training samples: objects classified by NN
 - Rule-based: fuzzy sets of object features
Segmentation at 1st level

- Species targeted
 - \(h=1 \) (minimum possible -> pixel)
 - spectral heterogeneity = 0.9
 - shape heterogeneity = 0.1
Segmentation at 2nd level

- Habitats targeted
 - $h=2$ (derived from statistics of level-1)
 - spectral heterogeneity = 0.9
 - shape heterogeneity = 0.1
Segmentation at 3rd level

- Fields targeted
 - $h=15$ (derived from inspection of results)
 - spectral heterogeneity = 0.7
 - shape heterogeneity = 0.3
Segmentation at 4th level

- Vegetation and water targeted
 - $h=25$ (derived from statistics of level-3)
 - spectral heterogeneity = 0.9
 - shape heterogeneity = 0.1
Hierarchy

Inheritance hierarchy
control of class description, e.g. levels, common properties

Groups
Hierarchy semantic grouping, e.g. ‘Herbs’, ‘Non-vegetated land’
Classification at 1st level

Area of interest at the Level-1, where results are expected to be reliable
Classification at 2nd level

- Scaling up of results of LEVEL-1
 - Rule-based classification
 - Incorporation of classes of LEVEL-1
 - Example: Herbs are these object that include either objects of High Reeds or Natural Grassland or Low herbs – Meadows at least 80% in total

Classified as HERB
Classification at 3rd level

- Discrimination of agricultural fields from natural vegetation
 - Rule-based classification
 - Exploitation of shape or texture parameters
Classification at 4th level
Accuracy assessment *(forthcoming)*

- Classification stability (based on the fuzzy character of the mapping results)
- Error matrix using (existing) testing samples
Evaluation of OBIA with AVNIR-2

- Advantageous because habitats appear as objects
- Laborious to setup the process
- Faster than digitizing
- More accurate than pixel based classification
Conclusion

- Hierarchy theory was essential for habitats nomenclature
- Contextual information is necessary for discriminating agricultural fields from natural vegetation
- OBIA is appropriate for extracting thematic information from ANVIR-2 imagery
Thanks for your attention!!