MONITORING INDICATORS FOR MEDITERRANEAN WETLAND AND AGRICULTURAL AREA USING ALOS DATA

G. Zalidis, T. Alexandridis, C. Topaloglou, I. Pardalis, G. Tsakoumis, M. Vogiatzis, A. Andrianopoulos, V. Takavakoglou, S. Vougioukas, D. Bochtis, and N. Silleos

Lab of Applied Soil Science,
Lab of Remote Sensing and GIS,
Lab of Agricultural Engineering,
School of Agriculture, AUTH
Environmental Monitoring

- Integral tool for wetland management

Use of Earth Observation (EO)
ALOS Satellite Images

- As a tool for integrated monitoring of wetlands

 Advantages
 - consistent method of data collection
 - broadly cover the entire study area, cost effective in medium to large study areas
 - allow easy multi-temporal comparison
 - allow study of inaccessible or highly protected areas
Aim

- Select and implement indicators for monitoring the natural and agricultural environment of a Mediterranean wetland using ALOS images

Specific objectives

- Integration of multiple levels of data
- Selection of the monitoring indicators
- Application of the methodology in the study area (Ramsar site “Lakes Koronia-Volvi”, Greece)
The WETMUST Project

“Integrated multiple level wetlands monitoring system using innovative technologies”

- Investigation and implementation of innovative technologies
 - satellite images, UAV, spectroradiometer, telemetry

- Combined use of 3 monitoring levels
 - surveillance, telemetry, remote sensing

- Integrated monitoring
 - data collection, processing, information, WebIMS

- 4 wetlands of international importance (Greece, Italy)
Study Area: lakes Koronia-Volvi
ALOS AVNIR-2 (15/06/2007)
Field surveying

- Stratified random sampling
 - Red: Preliminary sampling (basin)
 - Blue: Intensive sampling (wetland)
field surveying

- In situ measurements with portable field instruments
- Data collection and subsequent laboratory analyses
Telemetry / soil and water quality

- Recording of quality elements of soil and water for:
 - evaluation of existing state, inter-relation with pressures from human activities, assessment of future state of ecosystems
 - Inter-relating pressures from basin level to impacts on ecosystem level

- Production of baseline data / Time series

- Among the measured parameters are:
 - Electrical conductivity (EC)
 - pH
 - Dissolved oxygen (DO)
 - Nitrates
 - Total P
Low flight images from UAV...

Characteristics:

- high spatial analysis → easy photo-interpretation
- small geographical coverage → sampling only
- adequate spectral analysis (visible, near infrared)
- repeatability
Usefulness of UAV images

- Partial substitution of field work
- Especially in remote areas with limited access
- During data analysis:
 - identification of indistinguishable habitats
 - algorithm training for processing of satellite images
 - verification of remote sensing results
Satellite images

2007:
- ALOS AVNIR-2 (vegetation, water)
- ALOS PALSAR (water, inundated vegetation)

2003:
- Terra ASTER (multi-temporal changes)
Data integration

Methods

Data collection

- Field survey
 - Land cover samples
 - GPS
- Remote sensing
 - UAV images
 - Satellite images
- Telemetry
 - Time series

Analysis

- Spectral signatures
- Digital image processing
 - Photo interpretation
- Trend analysis

Environmental information

- Land cover
- Habitats
- Long term changes
- Landscape metrics
- Seasonal changes
- Map

Output

- WebIMS
- GeoDatabase
Derivation of envir. indicators

- According to the DPSIR (EEA) model
 - pressure indicators (land cover, agricultural intensity, temporal changes of human activities)
 - state/impact indicators (habitat map, ecological state of ecosystems, temporal changes)
- In accordance with legislation
 - WFD, Habitats, Ramsar
- Information diffusion
Land cover map

Materials-methods:
- sampling points
- ALOS AVNIR-2
- spectral classification

Information:
- wetland delineation
- agricultural areas
- intensity of irrigated fields

Legend
Koronia-Volvi basin CRAMSAR classes
- 11 Urban fabric
- 211 Non-irrigated arable land
- 212 Permanently irrigated land
- 311 Broad-leaved forest
- 312 Coniferous forest
- 321 Natural grassland
- 323 Sclerophyllous vegetation
- 324 Transitional woodland shrub
- 334 Burnt areas

Koronia wetland CRAMSAR classes
- 311 Mixed forest
- 4111 Reedbeds and large helophytes
- 431 Tamarix
- 5113 Seasonal streams
- 512 Water bodies
- 321 Natural grassland
- Exposed lake bed
- Mixed 431 and 4111
- 331 Beaches, dunes and sand plains

ALOS Symposium 2008
Habitat map

Materials-methods:
- sampling points
- UAV-satellite images
- spectral classification
- photo-interpretation and image digitalization

Information:
- location – size – type of habitat (26 types identified)
- wetland boundaries
Landscape metrics

Materials and methods:
- habitats map
- analysis with Fragstats software (Patch Density, Edge Density, Shannon’s Diversity Index, Interspersion and Juxtaposition Index)

Information for wetland state:
- wetland dominated by relatively large habitat patches (low fragmentation)
- relatively complex shape (provides habitat for wildlife)
- relatively low adjacency (habitat classes are not interspersed).
Time series of water quality

Materials-methods:
- time series analyses (telemetry and surveillance data)
- descriptive statistics
- trend analyses (Mann Kendall test, Sen’s slope estimator)

Information for long-term trends of parameters:
- EC is increasing
- pH is increasing
- DO ...

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Lake Koronia</th>
<th>Lake Volvi</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>0.045</td>
<td>0.010</td>
</tr>
<tr>
<td>pH</td>
<td>0.064</td>
<td>0.012</td>
</tr>
<tr>
<td>DO</td>
<td>-</td>
<td>0.007</td>
</tr>
</tbody>
</table>
Seasonal changes of water level

Water identification from two images:
- Infrared of ALOS AVNIR-2 (summer 2007, low level)
- ALOS PALSAR (winter 2006, high level)

Results:
- Seasonal water change 3.2%, lower than other years (100%)
- Inundated vegetation clearly visible in radar image
Land cover changes 2003-2007

Materials - methods:
- land cover map 2003
- land cover map 2007
- geographical overlay analysis

Information:
- changes in state
- water extents decreased by 5.4% (5.38 km²)
- reedbed expanded lakewards occupying an area of 2.01 km² of water and exposed sediment
Accessibility – diffusion of info

WebIMS
- Spatial representation
- Remote access
- Instant update
- Further utilization of info
Conclusions - Use of ALOS data in environmental monitoring

- Derivation of environmental indicators
- Integration in multiple level monitoring system
- Comparability with other satellite data for identification of temporal changes
- Transferability of methods from ASTER to ALOS

- Recommended for monitoring of natural and agricultural ecosystem, along with their interactions
Thank you for your attention

✉ zalidis@agro.auth.gr