REMOTE SENSING MODELLING AND MONITORING OF WATER QUALITY IN ARACENA AND GERGAL DAMS (SEVILLE, SPAIN).

(1) Seville University. Avda.polvorin@us.es
(3) EMASESA cescot@emasesa.com
Overview

Objectives.

Test sites, field work and Chris images.

Empirical and semi-analytical models.

Conclusions
Objectives

- Seasonal and spatial distribution of water quality parameters with Chris-Proba.

- Model development for quantification of:
 - Chlorophyll-a
 - Coloured dissolved organic matter (CDOM)
 - Total suspended solids (TSS)
 - Secchi disk depth
 - Turbidity
Test sites, field work and Chris-Proba images.

• Aracena and Gergal dams.

• Ground truth data. Reflectance. Constituents. IOP

• Chris-Proba processing
 Destriping.
 Atmospheric correction.
 Georeferencing.

Sampling points in Aracena dam

- 4 field campaigns
- 3 Chris acquisitions
- Only 1 date with simultaneous data
- 2 July 2005
Sampling points Gergal dam

4 field campaigns
2 Chris acquisitions
Only 1 date with simultaneous data
6 June 2005
Available data 2005-2006

<table>
<thead>
<tr>
<th>Aracena dam</th>
<th></th>
<th>Chris-Proba</th>
<th>Field data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 May 2005</td>
<td></td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>15 June 2005</td>
<td></td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>2 July 2005</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>18 Feb. 2006</td>
<td></td>
<td>Y/clouds</td>
<td>N</td>
</tr>
<tr>
<td>7 March 2006</td>
<td></td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>15 May 2006</td>
<td></td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gergal dam</th>
<th></th>
<th>Chris-Proba</th>
<th>Field data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 March 2005</td>
<td></td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>6 June 2005</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>6 Nov. 2005</td>
<td></td>
<td>Y</td>
<td>N (sus)</td>
</tr>
<tr>
<td>19 Apr. 2006</td>
<td></td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>5 May 2006</td>
<td></td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>
Ground Truth

Field spectroscopy measurement
Field spectrometer Ocean Optics (400-800 nm)
Above water reflectance $R(\lambda^+)$.
Spectralon (10% refl.). 45° zenith 135° azimuth
$L_{\text{down}}(\lambda), L_{\text{up}}(\lambda), L_{\text{sky}}(\lambda)$ 4 scans

In-situ water data
Secchi disk depth
CTD data: Chlorophyll, Phycocianin, Turbidity, DOM

Laboratory data
Chlorophyll-a, Turbidity (NTU), Total suspended solids (TSS).
Total absorption spectra of particules, pigments, detritus (unpigmented particules) and coloured water dissolved substances (CDOM).
Aracena dam 2-07-2005
Statistics in Aracena dam 2-07-2005

<table>
<thead>
<tr>
<th></th>
<th>Valid N</th>
<th>Mean</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Std.Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep (m)</td>
<td>10</td>
<td>20.8</td>
<td>8.0</td>
<td>35.</td>
<td>11.1</td>
</tr>
<tr>
<td>Secchi disk (m)</td>
<td>10</td>
<td>2.9</td>
<td>1.9</td>
<td>3.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Chl-a (mg/m³)</td>
<td>10</td>
<td>4.0</td>
<td>1.85</td>
<td>10.75</td>
<td>2.8</td>
</tr>
<tr>
<td>TSS (mg/l)</td>
<td>10</td>
<td>2.8</td>
<td>1.87</td>
<td>6.13</td>
<td>1.4</td>
</tr>
<tr>
<td>Chl-a (mg/m³)*</td>
<td>10</td>
<td>3.4</td>
<td>2.44</td>
<td>7.18</td>
<td>1.7</td>
</tr>
<tr>
<td>Turbidity (FTU)</td>
<td>10</td>
<td>2.5</td>
<td>1.2</td>
<td>5.4</td>
<td>1.2</td>
</tr>
<tr>
<td>DOM (mg/m³)</td>
<td>10</td>
<td>14.4</td>
<td>13.0</td>
<td>17.9</td>
<td>1.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Secchi</th>
<th>Chl-a</th>
<th>TSS</th>
<th>Chl-a*</th>
<th>Turbidity</th>
<th>DOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secchi disk (m)</td>
<td>1.00</td>
<td>-0.68</td>
<td>-0.03</td>
<td>-0.68</td>
<td>-0.82</td>
<td>-0.25</td>
</tr>
<tr>
<td>Chl-a (mg/m³)</td>
<td>1.00</td>
<td>0.29</td>
<td>0.98</td>
<td>0.82</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>TSS (mg/l)</td>
<td>1.00</td>
<td>0.30</td>
<td>-0.04</td>
<td>0.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chl-a (mg/m³)*</td>
<td>1.00</td>
<td>0.87</td>
<td></td>
<td>0.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidity (FTU)</td>
<td>1.00</td>
<td></td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOM (mg/m³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>
Sampling points
Aracena dam

Field reflectance spectra
IOP variability

Total particulate absorption.

Total abs. spectra (Aracena 2-07-2005)

- Wavelength (nm)
- Total absorption (m$^{-1}$)

IOP variability

Phytoplankton specific absorption.

![Graphs showing phytoplankton specific absorption coefficients](image-url)
IOP variability

Susp. solids spec. absorption.

Normalized TSS spec.abs.spectra (Aracena 2-07-2005)

<table>
<thead>
<tr>
<th>Sample</th>
<th>S</th>
<th>$a_{ss}(440)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA1</td>
<td>0.011</td>
<td>0.0835</td>
</tr>
<tr>
<td>AA2</td>
<td>0.011</td>
<td>0.2328</td>
</tr>
<tr>
<td>AA3</td>
<td>0.010</td>
<td>0.2222</td>
</tr>
<tr>
<td>AA4</td>
<td>0.010</td>
<td>0.2715</td>
</tr>
<tr>
<td>AA5</td>
<td>0.010</td>
<td>0.1961</td>
</tr>
<tr>
<td>AA6</td>
<td>0.009</td>
<td>0.2651</td>
</tr>
<tr>
<td>AA7</td>
<td>0.011</td>
<td>0.2605</td>
</tr>
<tr>
<td>AA8</td>
<td>0.011</td>
<td>0.2794</td>
</tr>
<tr>
<td>AA9</td>
<td>0.009</td>
<td>0.2905</td>
</tr>
<tr>
<td>AA10</td>
<td>0.010</td>
<td>0.2883</td>
</tr>
<tr>
<td>Mean</td>
<td>0.010</td>
<td>0.2390</td>
</tr>
</tbody>
</table>
IOP variability

CDOM absorption.

CDOM absorption spectra (Aracena 2-07-2005)

<table>
<thead>
<tr>
<th>Sample</th>
<th>S</th>
<th>$a_{\text{CDOM}}(440)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA1</td>
<td>0.0104</td>
<td>0.648</td>
</tr>
<tr>
<td>AA2</td>
<td>0.0094</td>
<td>0.609</td>
</tr>
<tr>
<td>AA3</td>
<td>0.0109</td>
<td>0.577</td>
</tr>
<tr>
<td>AA4</td>
<td>0.0103</td>
<td>0.545</td>
</tr>
<tr>
<td>AA5</td>
<td>0.0107</td>
<td>0.559</td>
</tr>
<tr>
<td>AA6</td>
<td>0.0102</td>
<td>0.768</td>
</tr>
<tr>
<td>AA7</td>
<td>0.0104</td>
<td>0.546</td>
</tr>
<tr>
<td>AA8</td>
<td>0.0139</td>
<td>0.443</td>
</tr>
<tr>
<td>AA9</td>
<td>0.009</td>
<td>0.7</td>
</tr>
<tr>
<td>AA10</td>
<td>0.0091</td>
<td>0.644</td>
</tr>
<tr>
<td>Mean</td>
<td>0.0104</td>
<td>0.603</td>
</tr>
</tbody>
</table>
Chris-Proba processing

Destriping by MNF transformation.

Atmospheric correction of inland water

Georeferencing with enough GCP.

Spectra extraction.
Destriping: Minimum noise fraction (MNF) on water pixels.

Original (Chris 0°) After MNF(Chris 0°)

Spectral Profiles before MNF

Reflectance

Wavelength (nm)

Spectral Profiles after MNF

Reflectance

Wavelength (nm)
MNF transform:

- Image dependance correction.
- Noise reduction but still residual noise
- Wavelength dependent reflectance modifications
- Atmospheric correction dependent on radiometric results.
Multiangular response variability and field spectra.
Chris and ground truth reflectances (10 points).
Empirical models

- Chris spectral data at sampling stations
- Spectral correlation
- Regression on Chris band ratio

Chl-a
Empirical models

- Chris spectral data at sampling stations
- Spectral correlation
- Regression on Chris band ratio

\[a_{\text{CDOM}}(440) \]
Empirical models

- Chris spectral data at sampling stations
- Spectral correlation
- Regression on Chris band ratio

\[\text{Chl-a} = 32.18 - 29.95 \times \frac{b4}{b8} \]

\[R^2 = 0.935 \]
Estimated concentration of chlorophyll-a in Aracena dam on the 2th of July 2005: zero viewing angle.
Empirical models

- Chris spectral data at sampling stations
- Spectral correlation
- Regression on Chris band ratio

\[\text{TSS} = 27.41 - 25.09 \frac{b9}{b18} \]
\[R^2 = 0.878 \]

\[\text{Turbidity} = -22.18 + 20.63 \frac{b12}{b16} \]
\[R^2 = 0.7749 \]
Estimated concentration of TSS in Aracena dam on the 2th of July 2005: zero viewing angle.
Estimated concentration of turbidity in Aracena dam on the 2th of July 2005: zero viewing angle.
Empirical models

- Chris spectral data at sampling stations
- Spectral correlation
- Regression on Chris band ratio

\[
\text{DOM} = 42.33 - 28.48 \times \frac{b9}{b18} \\
R^2 = 0.819
\]

\[
a_{\text{cdom}(440)} = 1.383 - 1.171 \times \frac{b2}{b7} \\
R^2 = 0.73
\]
Estimated concentration of CDOM in Aracena dam on the 2th of July 2005: zero viewing angle.
Estimated concentration of $a_{CDOM}(440)$ in Aracena dam on the 2th of July 2005: zero viewing angle.
Semi-analytical model

Irradiance reflectance model by Gordon et al. (1975)
\[R(\lambda) = f \frac{b_b(\lambda)}{a(\lambda)} + b_b(\lambda) \]

\[a(\lambda) = a_{ph}(\lambda) + a_d(\lambda) + a_{CDOM}(\lambda) + a_w(\lambda) \]
\[b_b(\lambda) = b_w(\lambda) + b_{bp}(\lambda) \]

- \(a(\lambda) \): total absorption
- \(a_{ph}(\lambda) \): phytoplankton absorption
- \(a_d(\lambda) \): detritus or non-algal particulate matter absorption
- \(a_{CDOM}(\lambda) \): absorption by chromophoric dissolved organic matter
- \(a_w(\lambda) \): absorption of the water
\[b_b(\lambda) = b_w(\lambda) + b_{bp}(\lambda) \]

- \(b_b(\lambda) \): total backscattering
- \(b_w(\lambda) \): backscattering of pure water
- \(b_{bp}(\lambda) \): total particulate backscattering

Simplifications:
- Air-water correction of remote sensing reflectance above water to subsurface irradiance reflectance
- \(f \) and \(Q \) (fixed)
- \(b_b(\lambda) \) inverted from spectral data
- mean SIOP models of absorption

Method:
Non linear inversion of constituents.
Inversion of constituents with in situ reflectance data

Fit and test of the model:
Q and f estimation
Measurement of \(b_b(\lambda) \)
Summary and conclusions:

• Striping of low radiance signal of in-land waters can be removed using MNF transformation. Spectral changes must be assessed.

• Different band ratios in the green-blue spectral range are good predictors of Chl-a and $a_{\text{cdom}}(440)$ and in the NIR-Red band ratios for TSS, Turbidity and DOM.

• Estimations of WQ parameters are within the expected range. The main inflow streams and other spatial patterns can be identified in the WQ images estimated with Chris-Proba data.

• SIOP measured can be applied to physically based models.

• CHRIS-PROBA data have high potential for monitoring in land water quality.
Further works

• Seasonal WQ empirical algorithms with field data acquired and validation with 2007 Chris-Proba campaigns.

• Complement SIOP models with backscattering measurements, refinement of the semi-analytical model and recovery of water constituents with Chris data.