LUXOR is famous for its archaeological heritage which includes Madmat Habu, Pharaonic temple, Hathepsut temple, Luxor temple, El Karnel temple, and Luxor temple. Most of these monuments are composed of roughly airlifted sandstones with high cement content. This paper presents the application of remote sensing and GIS techniques to help build the model in the future by analyzing data which extracted from analysis of satellite images and then using software packages (GIS) in formulating and inference methods that will help the researcher detect and monitor deterioration and degradation. The objective of the study is to identify the factors that affect the Luxor temple and the risks and the urbanization and the rise of the Nile level and the city. This will help in the Luxor temple to propose mitigation measures for reducing and addressing these problems. Also fill the gap of the impact on the Luxor Nubian barages on the groundwater in the Luxor area, followed by the study to evaluate the effects of different management measures for lowering groundwater level.

The Description of The Temple
The existing temple of Luxor was built during the reign of Ptolemy V (285–246 BC) and decorated by his successor, Ptolemy VI (180 – 145 BC), during that rule’s only year of reign. The temple is close to the city of Luxor, 5 km south west of the Sphinx pyramid and 3 km north of the Nil-Gulf barrage. The temple is the most important and most visited site in Egypt (Kotb, Wael Attia, 2014). The temple is characterized by a granite pyramid towards the north. Ground surface elevations vary from about 25 m above sea level (m.a.s.l.) near the course of the Nile River (in the central part of the Nile River) to about 80 m (m.a.s.l) on the fringes of the Nile Valley. Gaal El Gouna (Thebes) is located in the western side of the Nile River. The Nile River is characterized by the following geological features. The siltstone, The Pharaonic tombs and The hydraulic pattern.

Methodology
The present study involves the collection of Topographic, Hydrogeological-sheets and the required satellite imagery for the study area. Processing the image and image interpretation for development of Land user Land cover maps is done in Erdas and Arc GIS. These maps are designed and analyzed for use in the study area and the change in agriculture and the surrounding area. Future prediction is done before and after, and detects the negative impact of building the new Luxor barage which leads to increase the water level near the temple of Luxor to make creative solutions using the integration between remote sensing data and GIS programs.

Topographic Geomorphology
The area of Luxor is composed of typical topographic features, and is characterized by a granite pyramid towards the north. Ground surface elevations vary from about 25 m above sea level (m.a.s.l.) near the course of the Nile River (in the central part of the Nile River) to about 80 m (m.a.s.l) on the fringes of the Nile Valley. Gaal El Gouna (Thebes) is located in the western side of the Nile River. The Nile River is characterized by the following geological features. The siltstone, The Pharaonic tombs and The hydraulic pattern.

Climate Impacts
As a cooling pressure change daily (day and night) and seasonally, water and moisture are concentrated over the surrounding vegetation. Thermal gradients due to temperature fluctuations will accelerate the production and expansion of cracks perpendicular to the stone foundations. Wind and sand blast directed by strong northeast winds can cause negative effects. Erosion is also a problem. The stretch of the Nile River that crosses the area under investigation is about 64 km. It runs in a N–S direction except in some parts of the valley, where it takes an E–W direction. Climate change and the characteristics of its study areas are mainly affected by these factors. The area of Luxor is located in the upper part of the Nile Valley, where the river flows near the ancient city and it is affected by the seasonal high lake level. It receives an annual precipitation of 600 mm. This region experiences a Mediterranean type climate with summer months being dry and winter months being rainy. Maximum temperatures are reached in July at 42°C and minimum temperatures are recorded in January at 4°C. The average monthly precipitation is 60 mm. The area is characterized by a high degree of desertification. The dry areas are covered by sand dunes and the humidity and temperature change significantly. The area is characterized by high rate of human activities and innumerable artifacts. The preservation of the heritage sites is a problem and requires a scientific approach. The area is characterized by high rate of human activities and innumerable artifacts. The preservation of the heritage sites is a problem and requires a scientific approach.

Hydrogeological Settings
The climate of the study area is characterized by Mediterranean climate and the area is sandy and contains low permeability rocks. The area is characterized by high rate of human activities and innumerable artifacts. The preservation of the heritage sites is a problem and requires a scientific approach. The area is characterized by high rate of human activities and innumerable artifacts. The preservation of the heritage sites is a problem and requires a scientific approach. The area is characterized by high rate of human activities and innumerable artifacts. The preservation of the heritage sites is a problem and requires a scientific approach.

Groundwater Deterioration
The groundwater levels have been negatively affected by weathering factors. Daily and seasonal cycles of dry and wet, acting on the surface and inside the stone block foundation, water levels and evaporation rate, which affects the environment of the Luxor temple. The impact of the soil foundation on the Luxor temple is characterized by the following criteria. The temple becomes more susceptible to weathering. High rate of human activities and innumerable artifacts. The preservation of the heritage sites is a problem and requires a scientific approach. The area is characterized by high rate of human activities and innumerable artifacts. The preservation of the heritage sites is a problem and requires a scientific approach. The area is characterized by high rate of human activities and innumerable artifacts. The preservation of the heritage sites is a problem and requires a scientific approach. The area is characterized by high rate of human activities and innumerable artifacts. The preservation of the heritage sites is a problem and requires a scientific approach.

Conclusion
It is concluded that the construction of Luxor temple by the Pharaohs was a monumental achievement. The change in the climate, and the construction period of the Luxor temple, have had an impact on its condition. The modernization of Luxor temple is a necessity. The study area is characterized by high rate of human activities and innumerable artifacts. The preservation of the heritage sites is a problem and requires a scientific approach. The area is characterized by high rate of human activities and innumerable artifacts. The preservation of the heritage sites is a problem and requires a scientific approach. The area is characterized by high rate of human activities and innumerable artifacts. The preservation of the heritage sites is a problem and requires a scientific approach. The area is characterized by high rate of human activities and innumerable artifacts. The preservation of the heritage sites is a problem and requires a scientific approach. The area is characterized by high rate of human activities and innumerable artifacts. The preservation of the heritage sites is a problem and requires a scientific approach.

References
A- New Site selection
B- According to Erdas (1999), it is believed that the right approach to solve the situation is the application of the concept of "discharge reserves", as proposed and adopted by the government of Luxor, to the Luxor temple. This can be met by the "Zonation System" that assigns different management policies to different zones. In the area, the significant "core" area, is defined by the site selection, and location in the Luxor city. The core is to be surrounded by one or more "buffer zone" in which supplementary management and land use restrictions may be carried out.

SKILLS AND RECOMMENDATIONS
1. As the result of environmental risks around the Luxor temple, working to choose a appropriate sites to the temple of Luxor by using site selection modeling. Find multiple scenarios to transfer the temple to suitable area (as the result of environmental risks). Do the site selection modeling.
2. Building Optimum land use mapping, up-to-date land cover/use map of Study area and intensive digital land resources data base for the study area to monitor environmental problems surrounding the study area using Data Analysis and estimating options and agricultural spatial rate on the expense of surrounding area.
3. Because The level of the groundwater has become a huge danger on the area of the temple after the construction of the Nile barrage and water flow systems covered with a layer of sponge to withdraw the groundwater or digging up. Trenches at spaced distances of the temple to withdraw the wastewater slowly then the discharge from the wastewater to the stream even do not happen for walls of the cells.
4. As the result of the impact of the agricultural wastewater which loaded with chemicals, pesticides and salts must be changing the streams of these canals to avoid these risks.