Deformation and Stress-Change Modeling of Sierra Negra Volcano, Galápagos, from Envisat InSAR and GPS Observations

Sigurjón Jónsson, Institute of Geophysics, ETH Zürich, Switzerland
William W. Chadwick Jr., Oregon State University and NOAA, USA
Dennis Geist, Geological Sciences, University of Idaho, USA
Michael Poland, Hawaii Volcano Observatory, USGS, USA

Radar data provided by ESA through Category-1 project #3493
Purpose

§ To explain the sequence of events leading to the Oct. 2005 eruption at Sierra Negra and the interplay between caldera inflation and faulting

Outline:

§ Background
§ Measurements of the inflation and modeling
§ Observations of the intra-caldera faulting
§ Stress change calculations
§ Conclusions
Galápagos Volcanoes

Basaltic shield volcanoes with large summit calderas, 1-2000 m in elevation,
Deformation map from InSAR 1992-1998 showing that all the volcanoes are actively deforming
Sierra Negra uplifted by over 2 m, and subsidence found on recent lava flows

Sierra Negra Caldera Uplift

GV04

Sinuous ridge

Elevated inner caldera floor

South moat
Ø Over 50 cm of uplift in one year
Ø Mogi or finite ellipsoid do not work
Ø Inflating sill at 2.2 km depth can explain the deformation
Ø Still differences, which may be due to 3-dimensionality of the source
• From GPS we know much deformation is due to uplift
• Assume uplift pattern is the same as in 2004, then scale and subtract it from the interferogram
• Only left with deformation due to the faulting
Trapdoor Faulting on 16 Apr 2005

§ Only InSAR recorded the trapdoor faulting in 1998 and then the interpretation was a south-dipping fault!!

§ Resolving this dip-inconsistency is important to understand the volcano dynamics

§ How well can we constrain the fault dip from the deformation data?
Estimating the Fault-Dip Uncertainty

§ We analyzed the structure and power of a few non-deforming areas north of the caldera.
§ Determined the average empirical covariance structure, which we used to form the data covariance matrix.
§ Created multiple synthetic data sets by adding several thousands different random realizations to the original data.
§ Estimated model parameters from each synthetic data set and inspect the distribution of parameters.
§ Approximate the marginal PDF with a Gaussian distribution.
§ Fault dip 67-74° to the north, at a 95% confidence level.
Sierra Negra Stress-Changes

Mean stress change: $\Delta \sigma_{kk} / 3$

Bar thickness reflects differential stress change: $| \Delta \sigma_1 - \Delta \sigma_3 | / 2$
Coulomb Failure Stress Change due to the Inflating Sill

\[\Delta \text{CFS} = \Delta \tau_s + \mu_f \left(\Delta \sigma_n - \frac{B}{3} \Delta \sigma_{kk} \right) \]

- Pure dip-slip (north side up), and calculate \(\Delta \text{CFS} \) at 1.5 km depth
- Positive \(\Delta \text{CFS} = \) closer to failure

Assume the following:
- Coeff. friction: \(\mu_f = 0.75 \)
- Shear modulus: \(\mu = 10 \) GPa
- Poisson’s ratio: \(\nu = 0.25 \)
- Skempton’s coeff.: \(B = 0.5 \)
Ø Inflating sill promotes thrust faulting on north dipping faults
Ø Vertical or south-dipping normal faults unlikely
Ø The maximum Coulomb Failure Stress Change is found on a fault dipping 72 degrees to the north

Ø Cool!
Did the faulting reduce the magma pressure?
The trapdoor faulting causes more than 3 MPa mean stress change, relieving the magma pressure.

Negative mean stress change to the south, preventing sill growth to the south.
Conclusions

§ Inflating magma sill triggers repeating trapdoor faulting on Sierra Negra
§ Coulomb failure stress calculations confirm the steeply dipping thrust fault estimated from the geodetic data
§ The trapdoor faulting relieves the magma pressure, tends to thicken the sill, prevents southward magma propagation and somewhat postpones eruptions
§ More than 5 m of co-eruption subsidence occurred on Sierra Negra in October 2005 and after the eruption the caldera floor has already uplifted by 2-3 meters.

Photo by M. Hall, GVP
Now the ΔCFS is positive everywhere. Large ΔCFS occur near the peripheries of the sill. The maximum occurs in the south, exactly on the estimated fault plane.
Does a 70° dipping thrust fault make sense?
Fault model parameter marginal pdfs

- Length [km]
- Width [km]
- Depth [km]
- Dip
- Strike
- East [km]
- North [km]
- Strike-slip [m]
- Dip-slip [m]