Enhancements for High Resolution SAR Persistent Scatterer Interferometry

Stefan Gernhardt(1), Stefan Hinz(1), Nico Adam(2) and Richard Bamler(1,2)

(1) TU München, Arcisstr. 21, 80333 München, Germany
(2) DLR, Remote Sensing Technology Institute, 82230 Oberpfaffenhofen, Germany
Motivation

- new possible goals and challenges in PSI with high-resolution SAR-Images
 - expected vast increase in number of PS-Candidates
 - different appearance of PSCs (connected lines, areas, L-structures)
Motivation

- new goals and challenges in PSIInSAR with high-resolution SAR-Images
 - expected vast increase in number of PS-Candidates
 - different appearance of PSCs (connected lines, areas, L-structures)

=> new potentials for object specific evaluation (buildings, bridges, etc.)
DLR-TUM PSI-Approach

- **data import**
- **InSAR processing**
- **D-InSAR processing**
 - estimation: combined est. + hypothesis tests
- **visualisation**
 - \(v(t, rg, az) \)
 - \(Dh(rg, az) \)
 - atmospheric delay
- **calibration**
- **PS detection**
 - blob detection
Part I – Detection

DEM

CEOS CD

data import

InSAR processing

D-InSAR processing

estimation combined est. + hypothesis tests

visualisation

v(t, rg, az)

Dh(rg, az)

atmospheric delay

calibration

PS detection

blob detection
blob model:
- 2D rectangular region as (undistorted) primitive + Noise (here: additive)
- convolution of primitive region with Gaussian kernels:
 => noise suppression
 => blurred region (= “blob”)

mathematically:

\[
 f_r(x, y) = \begin{cases}
 1 & \text{for } |x| \leq 1 \text{ and } |y| \leq w \\
 0 & \text{otherwise}
\end{cases}
\]

\[
 r_\sigma(x, y, l, w) = f_r(x, y) * g_\sigma = (G_\sigma(x + l) - G_\sigma(x - l)) \cdot (G_\sigma(y + w) - G_\sigma(y - w))
\]

with \(G_\sigma(x) = \int_{-\infty}^{x} e^{-\frac{t^2}{2\sigma^2}} dt \) and \(g_\sigma(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}} \)

(assuming noise is suppressed by low-pass filtering)
blob detection:
- initialize by setting parameters for length \(l \), width \(w \)
- find orientation of major axis by eigenvector analysis of Hessian matrix \(H \)
- detect center point by curvature maximum in direction of minor and major axis
- reconstruct blob boundary polygon and fit ellipse
- calculate geometric and radiometric features

Initialization:
\[
\sigma_w = \frac{w}{\sqrt{3}}, \quad \sigma_1 = \frac{1}{\sqrt{3}}
\]

Hessian matrix containing second derivatives for smaller scale \(\sigma_w \):
\[
H(x, y) = \begin{bmatrix}
r_{xx} & r_{xy} \\
r_{xy} & r_{yy}
\end{bmatrix}
\]
blob detection:
- initialize by setting parameters for length l, width w
- find orientation of major axis by eigenvector analysis of Hessian matrix H
- detect center point by curvature maximum in direction of minor and major axis
- reconstruct blob boundary polygon and fit ellipse
- calculate geometric and radiometric features

$=>$ eigenvectors e_1, e_2 of Hessian matrix determine blob orientation

$=>$ determine curvature maximum along blob orientation (smaller eigenvalue e_2)
- convolution with second derivative of Gaussian Kernel of larger scale σ_l
- subpixel determination of maximum

\[
g_{\sigma_1}''(x) = \frac{x^2 - \sigma_1^2}{\sqrt{2\pi}\sigma_1^5} e^{-\frac{x^2}{2\sigma_1^2}}
\]
Blob Detection

- blob detection:
 - initialize by setting parameters for length l, width w
 - find orientation of major axis by eigenvector analysis of Hessian matrix H
 - detect center point by curvature maximum in direction of minor and major axis
 - reconstruct blob boundary polygon and fit ellipse
 - calculate geometric and radiometric features

2D curvature maxima

Eigenvectors of Hessian matrix
 blob detection:
- initialize by setting parameters for length l, width w
- find orientation of major axis by eigenvector analysis of Hessian matrix H
- detect center point by curvature maximum in direction of minor and major axis
- reconstruct blob boundary polygon and fit ellipse
- calculate geometric and radiometric features
blob detection:
- initialize by setting parameters for length \(l \), width \(w \)
- find orientation of major axis by eigenvector analysis of Hessian matrix \(H \)
- detect center point by curvature maximum in direction of minor and major axis
- reconstruct blob boundary polygon and fit ellipse
- calculate geometric and radiometric features

Example: Large blobs
superimposed on smoothed image
superimposed on original image
blob detection:
- initialize by setting parameters for length l, width w
- find orientation of major axis by eigenvector analysis of Hessian matrix H
- detect center point by curvature maximum in direction of minor and major axis
- reconstruct blob boundary polygon and fit ellipse
- calculate geometric and radiometric features

Example: Blob chain

superimposed on smoothed image superimposed on original image
Part II – Estimation

- data import
- InSAR processing
- D-InSAR processing
- estimation
 combined est. + hypothesis tests
- visualisation
 v(t, rg, az)
 Dh(rg,az)
 atmospheric delay
- calibration
- PS detection
 blob detection
Estimation Process

- restricted Least-Squares Adjustment: **points on a rigid line**

\[
\Delta \hat{x} = -(A'(BQ_{bb}B')^{-1} A)^{-1} A'(BQ_{bb}B')^{-1} w
\]

- weighting of arcs
- restrictions
- system matrix

unknowns in general (each PS): v, h

3 unknowns of group: v, h, v_x
Models for Displacement

- analysis for **single** buildings
- same displacement
 - differences always zero between points in group or
 - constant between each point in group and one reference point outside
- shearing or rotation
 - movement proportional to distance between points in line

\[
\Delta v_{mn} = \Delta v_m + v_x \Delta s_{ln}
\]

\[
v_{m} = \text{const}
\]

\[
v_{1,n} = \text{const}
\]
estimate displacement between reference point and each point in group
 ‣ estimation set up by maximizing ensemble coherence (periodogram)
 ‣ estimate first arc (use best point in group)

use as a priori knowledge for following estimations:
 ‣ variation of differences in height-estimations
 ‣ very small as PSCs on same level (e.g. roof)
 ‣ form defined (known) path as on certain structure (e.g. arch bridge, front of skyscraper)
 ‣ variation of differences in displacement
 ‣ constant while moving together
 ‣ linear increasing, dependent on distance between points

combine estimations for gain in accuracy
 ‣ standard deviation enhanced by least squares adjustment
 ‣ removement of outliers (hypothesis tests)
results for constant and linear increasing displacement (simulation)

20 arcs, 40° noise, **constant** displacement
increase: 0.00178 mm/y per m \(\sigma = 0.0088 \)
displacement: -3.95 mm/y \(\sigma = 0.037 \)
real: -4 mm/y

20 arcs, 40° noise, **linear increase** 0.5mm/y per m
increase: 0.5004 mm/y per m \(\sigma = 0.0104 \)
displacement: -3.71 mm/y \(\sigma = 0.062 \)
real: -4 mm/y
Comparison

- results of different noise level and number of arcs

<table>
<thead>
<tr>
<th>noise</th>
<th>unknowns</th>
<th>10 points</th>
<th>20 points</th>
<th>10 points</th>
<th>20 points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>est. value</td>
<td>σ</td>
<td>est. value</td>
<td>σ</td>
<td></td>
</tr>
<tr>
<td>30°</td>
<td>increase mm/y per meter</td>
<td>-0.020</td>
<td>0.027</td>
<td>0.005</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>basic displacement</td>
<td>-3.938</td>
<td>0.044</td>
<td>-3.966</td>
<td>0.029</td>
</tr>
<tr>
<td>40°</td>
<td>increase mm/y per meter</td>
<td>-0.025</td>
<td>0.031</td>
<td>0.002</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>basic displacement</td>
<td>-3.921</td>
<td>0.050</td>
<td>-3.949</td>
<td>0.037</td>
</tr>
</tbody>
</table>

constant displacement for all points of group
Conclusion

- **blob detection**
 - different scales for length and width => not only circular but elliptical blobs
 - easy parameterization
 - fast and sub-pixel precise detection
 - accurate measurement of boundary

- **combined estimation**
 - increased accuracy of displacement of points in the same group (relative to reference point):
 \[\sigma_{\text{LSA}}^2 \leq \frac{1}{n} \sigma_{\text{single}}^2 \]
 - provides support for monitoring single objects (e.g. bridges, large(er) buildings)
 - detection of possible risks / evidence for buildings caused by non-equal subsidence of points in group
Outlook

- upcoming tests, improvements

- blob detection:
 - integration in processing chain
 - exploitation of temporal features (geometric and radiometric coherence)
 - behaviour of detected blobs to phase stability

- combined estimation
 - classification to groups (same object)
 - use additional information from land register maps, GIS or Laser-DEM
 - integration of results in whole estimation process of all PSCs
Thank you for your attention!