

Constellation Status of the Swarm Mission

Swarm Flight Dynamics Team

ESA UNCLASSIFIED - For ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY

*

Content

- > S/C mass and fuel status
- > Yearly fuel consumption and lower pair formation maintenance
- Observed altitude evolution
- Status of the solar activity and evolution
- Predicted altitude evolution
- Swarm-B orbital plane rotation
- Conclusion and discussion points

Fuel Consumption Since Start of Science Operations

→ THE EUROPEAN SPACE AGENCY

Lower Pair Inclination Change

Evolution Of RAAN

*

S/C Mass and Fuel Status

		Fuel after
_	Fuel	orbit acquisition
Dry mass	loaded	(May 2014)
A: 367.23kg	105.5 kg	66.74 kg
B: 367.79kg	105.2 kg	67.24 kg
C: 370.59kg	102.8 kg	64.47 kg

Total mass (Oct 2024)

380.80 kg

<mark>360.08</mark> kg

384.98 kg

Swarm-A mass is 1.09% lower than Swarm-C mass

Current	Current	
Fuel Pulse counting	Fuel ←──→ PVT	
13.57 kg	15.89 kg	
46.82 kg	45.75 kg	
14.39 kg	13.48 kg	

During solar maximum the yearly fuel consumption is still less than 1kg / year

Lower Pair Formation, ∆Time

Lower Pair Yearly Fuel Consumption

Attitude control consumption is about 0.6 kg

Each Swarm-A or Swarm-C **collision avoidance manoeuvre** requires typically **0.1kg** because of 180 deg attitude slews.

During the last 12 months **formation maintenance** required:

- 5 manoeuvres by Swarm-A
 Fuel spent: 0.042 kg
- 2 manoeuvres by Swarm-C
 Fuel spent 0.007 kg

 \rightarrow The fuel consumption for formation maintenance remains minor.

Swarm Altitude Evolution

Swarm altitude evolution and orbit determination and prediction model.

Swarm operational orbit determination at ESOC uses the NRLMSIS-00 atmosphere model. One daily air drag force scale factor is estimated to match the decelerations from the air density model to the actually observed declaration.

A higher scale factor is estimated during solar maximum as the modelled air drag is smaller than reality A lower scale factor is estimated during solar minimum as the modelled air drag is higher than reality

History of Air Density Scale Factors

Has the drop of CD already started? This might just be a temporal fluctuation

1(

History of Air Density Scale Factors

Observed Altitude Evolution

Semi major axis

Input to atmosphere density model NRLMSIS-00 are solar radio 10.7 cm flux, **F10.7**, and **Ap**, the geomagnetic planetary index.

Values shown are from Space Environments Team at Marshall Space Flight Center, **MSFC**.

Predictions of cycle 25 shown here are based on statistical estimation technique https://www.nasa.gov/sites/default/files/at oms/files/tm4759_0.pdf

Input to atmosphere density model NRLMSIS-00 are solar radio 10.7 cm flux, **F10.7**, and **Ap**, the geomagnetic planetary index.

Values shown are from Space Environments Team at Marshall Space Flight Center, **MSFC**.

Predictions of cycle 25 shown here are based on statistical estimation technique https://www.nasa.gov/sites/default/files/at oms/files/tm4759_0.pdf

Input to atmosphere density model NRLMSIS-00 are solar radio 10.7 cm flux, **F10.7**, and **Ap**, the geomagnetic planetary index.

Values shown are from Space

Predictions of cycle 25 shown here are based on statistical estimation technique https://www.nasa.gov/sites/default/files/at oms/files/tm4759_0.pdf

Input to atmosphere density model NRLMSIS-00 are solar radio 10.7 cm flux, **F10.7**, and **Ap**, the geomagnetic planetary index.

Values shown are from Space Environments Team at Marshall Space Flight Center, **MSFC**.

Predictions of cycle 25 shown here are based on statistical estimation technique https://www.nasa.gov/sites/default/files/at oms/files/tm4759_0.pdf

Solar radio flux and geomagnetic activity, past and predicted (MSFC)

Input to atmosphere density model NRLMSIS-00 are solar radio 10.7 cm flux, **F10.7**, and **Ap**, the geomagnetic planetary index.

Values shown are from Space Environments Team at Marshall Space Flight Center, **MSFC**.

Predictions of cycle 25 shown here are based on statistical estimation technique https://www.nasa.gov/sites/default/files/at oms/files/tm4759_0.pdf

Input to atmosphere density model NRLMSIS-00 are solar radio 10.7 cm flux, **F10.7**, and **Ap**, the geomagnetic planetary index.

Values shown are from Space Environments Team at Marshall Space Flight Center, **MSFC**.

Predictions of cycle 25 shown here are based on statistical estimation technique https://www.nasa.gov/sites/default/files/at oms/files/tm4759_0.pdf

→ THE EUROPEAN SPACE AGENCY

Predicted Altitude Evolution

Altitude (at ANX)

Predicted Altitude Evolution

Swarm-B Orbital Plane rotation

LTAN difference between Swarm-B and lower pair orbital plane keeps increasing. In particular , the orbital planes will become:

- perpendicular (18 h LTAN difference) in 2025 and corotating
- coplanar (24 h LTAN difference) in 2029

To stop the relative rotation would require almost all the fuel on board of Swarm-B, so this possibility has been discarded.

However, there is still the possibility to slow down the drift in order to get the corotating orbital planes in 2031

■ __ 88 , __ = + 88 ; __ 88 , __ 88 , __ 88 , __ 88 , __ 88 , ...

Wrap up and points for Discussion:

Fuel on board(PVT): 45.75 kg 13.48 kg -> spending 1 kg/year for attitude control and CAMs, the lower pair is expected to have 6 to 8 kg left at next solar minimum in 2031

- If solar activity remains at the higher end of the MSFC prediction, then the Swarm-A and C re-entry can occur already 2027. No further significant change of Swarm-A/C altitude is possible with the remaing fuel. (With 5kg of fuel an altitude change of only 8km can be achieved).
- > At the next DQW we most likely know when the solar maximum was.
- Swarm-A and C RAAN difference is now stable at 1.4 deg

Discussion point: Shall it get adjusted again before the next solar minimum?

- Swarm-B is now 37km above lower pair, increasing to 67km during the next two years. Discussion point: Is it desired to keep the altitude difference within boundaries ?
- The Swarm-B orbital plane is drifting with respect to the Swarm-A/C ones.; orbital planes will be perpendicular in 2025/2026 and coplanar 2029/2030.

Discussion point: is it desired to slow down the drift to have coplanar orbital planes in 2031 instead?