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1 Introduction

In this practical we will explore the implementation of two variations of the ensemble Kalman filter.
The first one is the perturbed-observations ensemble Kalman filter (EnKF; Burgers et al, 1998). The
second one is a deterministic ensemble square root filter (Tippett et al, 2003), in particular the ensemble
transform Kalman filter (Bishop et al, 2001; Wang et al, 2004). Our experiments will use the Lorenz
(1963) model.

The computer instructions to run the experiments of this practical are contained in the file Con-
trols63Ens.m. You will be asked to modify values of certain variables in these instructions. You do
not need to modify any of the other files.

Controls63Ens.m is divided in cells (by using % % througout the file). An individual cell can
be run either by hitting control+enter, or using the ‘evaluate cell’ command in the cell toolbar of the
Matlab editor window. Controls63Ens.m contains instructions to do the following tasks:

• Run the Lorenz 1963 model
• Generate synthetic observations
• Perform data assimilation with EnKF and ETKF
• Compute diagnostics (e.g. root mean squared error)
• Produce and display graphs

2 Set up for the experiment

2.1 Nature run

The first part of the practical is to get a nature run, corresponding to cells 1.a and 1.b. The Lorenz
1963 model has 3 variables: {x, y, z}, hence the state vector is x = [x, y, z]T . The time evolution of
these variables is described by the following 3 coupled ordinary differential equations:

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

(1)
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These equations have 3 parameters: {σ, β, ρ}. For some values of these parameters the model is
chaotic, in particular we choose {σ = 10, β = 8/3, ρ = 28}. The model is integrated using the 4th

order Runge-Kutta method with ∆t = 0.01 (adimensional units).
In the program, the default initial condition is x0 = [−10, 10, 20]T and the maximum time of

integration is tmax = 10. You can integrate the model by running cell 1.a, and you can visualize the
evolution of the variables by running cell 1.b. This will produce two plots: one showing the time
evolution of each of the 3 state variables, and one displaying the trajectories of the variables in state
space. This is shown in figure 1. You can rotate this last plot to look at the figure from different
perspectives.

Let us start the experiments now:
a) Select different initial conditions for the model, e.g. {x0 = [−1,−1, 0]T ,x0 = [0, 20, 10]T ,x0 =

[5, 5, 5]T} and different final times: tmax = {2, 5, 10, 30, 50}. What are the differences in the plot you
get? In particular, what happens to the 3D plot as the final time of integration increases?

Figure 1: Nature run of the Lorenz 1963 model. The left side of the figure displays the time evolution
of the 3 variables separately. The right side of the figure displays the trajectories in phase space (time is
implicit in this figure). Two nearby initial points have been chosen; their different evolution highlights
the chaotic nature of the model.

2.2 Observations

Now we will generate synthetic observations from the trajectory started at x0 = [−10, 10, 20] and ran
until tmax = 40. The instructions to run this part of the exercise are contained in cells 2.a, 2.b and 2.c.
The observations are generated by simulation the observation equation:

y = Hx + η (2)

where H is a linear observation operator and η is a random variable with distribution N(µ = 0,R).
The observation error covariance matrix is R = σ2I, i.e. a diagonal matrix with the same variance for
each observation.

We can play with 3 aspects of the observational network: how many of the 3 variables we observe
(denoted in cell 2.a. as option 1, option 2 and option 3), how frequently do we observe (denoted by
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the variable freqobs), and the variance of the observations (denoted by the variable varobs). One can
visualize the synthetic observations with the plotting routines contained in cell 2.c.

c) Run the code with the following choices: freqobs = {8, 24, 40} and varobs = {1, 2, 8}. How do
you think the DA problem will differ for these different situations?

d) Can you design an observation operator which corresponds to only observing y?

3 Using the ensemble Kalman filter

3.1 State estimation

The instructions for this part of the practical are contained in cells 3.a, 3.b, 4.a and 4.b. Cell 3.a runs
the data assimilation procedure and gets 4 variables: Xb and Xa, which are the background and analysis
ensembles, and x̄b and x̄b which are the background and analysis ensemble means. Cell 3.b displays the
nature run, the observations, as well as the background and analysis values for all state variables. It
should result obvious that background and assimilation differ only at observation times. This was not
the case with 4DVar, which is a smoother and hence modifies the whole trajectory of the state variables
between observation times.

To evaluate the performance of the data assimilation, one can use the root-mean squared error of
the analysis mean with respect to the truth. For every time step, this is computed as:

RMSE(t) =

√
d(t)Td(t)

3
(3)

where d(t) = x̄a(t) − xtrue(t). This is computed by running cell 4.a and plotted by running 4.b. The
spread (standard deviation) of the ensemble at anytime is also computed and displayed. Under ideal
conditions, these two quantities (analysis RMSE and analysis ensemble spread) should be comparable.

After this description, let us start the experiments. We can play with 3 implementation aspects. The
first is the type of ensemble Kalman filter: met = {SEnKF,ETKF}, ensemble size M = {3, 10, . . .},
and inflation factor ρ = {0, 0.1, . . .}, where inflation is applied as: Xb → (1 + ρ)Xb.

Let us start experimenting with more ensemble members than variables. This often an unrealistic
case in practice but it will illustrate the effect of ensemble size.

e) Choose M = {40, 20, 10} and use both flavours of EnKF and different observed variables and
frequency of observations (use the recommended values from the previous sections). What should you
choose for ρ in this case?

f) After running cell 3.b., you will notice there are two plots showing the model evolution. What is
the difference between the 2 of them? What happens as you decrease the ensemble size?

For the rest of this section let us set M = 3, the minimum possible size. In this case, this size is the
same as the number of state variables.

g) First, keep ρ = 0. Try different number of observed variables, different frequencies of observations,
and the 2 types of EnKF. How is the performance in this case? Is the filter performing well?

h) We will try to ‘fix’ the filter by introducing inflation. Starting from ρ = 0 (no inflation), increase
the value until you find a ‘decent’ performance of the filter. This process is known as ‘tuning’. Again,
experiment with different observed variables, different frequencies of observations, and the two EnKF
methods. Hint: inflation is very sensitive to the frequency of observations. For ‘frequent’ observations
(every 8 model steps), start with ρ = {0.01, 0.02, . . .}, for ‘infrequent’ observations (every 24 and 40
steps) try values such as ρ = {0.1, 0.2, . . .}.
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3.2 Parameter estimation

In the previous section we used EnKF and ETKF for state estimation. In many applications, the pa-
rameters of the model are not known with absolute certainty. Having incorrect values for the parameters
can lead to very different evolutions of the model. This is shown in figure 2. The left panel shows the
trajectory generated with the ‘true’ parameters, whereas the other 2 panels show trajectories generated
‘wrong’ parameters.

Figure 2: Trajectories of the Lorenz 1963 model with 3 different sets of parameters.

To estimate parameters we simply extend the state vector to: x = [x, y, z, σ, β, ρ]T . There are two
important properties of the parameters. First, they are unobserved variables, but they can be updated
via the sample covariance between them and the state variables. Second, the model evolution for them
is just the identity, i.e. their values do not change during the forecast step, e.g. for ρ this would mean
ρb(tobs = j) = ρa(tobs = j − 1) (we will revisit this later).

The instructions to run this part of the practical are found in the file ControlsL63Pe.m. As before,
this file is divided in cells. Cells 1.a and 1.b. contain the evolution of the model.

i) We will consider the values {σ = 10, β = 8/3, ρ = 28} as the ‘true parameters’ for our next
experiments. However, run the model with the following sets of parameters: {σ = 9, β = 3, ρ = 30},
{σ = 6, β = 7, ρ = 14}, {σ = 0, β = 0, ρ = 0}. How do the trajectories differ? Which cases will be more
challenging for parameter estimation?

The next part of ControlsL63Pe.m are cells 2.a and 2.b. These are exactly as in ControlsL63En.m:
they generate observations and display plots of these observations. For the moment, let us choose the
following configuration: observe x and z only, with a frequency of freqobs = 12 model steps, and an
observational variance σ2 = 2. You can come back and experiment with different values at the end of
the practical if you have time left.

The parameter estimation experiments are controlled by cell 3.a and 3.b. In this case, we will only
experiment using ETKF with M = 20 ensemble members, and no inflation ρ = 0. Again, you can
experiment with EnKF and other ensemble sizes if you have time left at the end of the practical. You
will notice a parameter called α. For the moment leave it as α = 0, its function will become clear later.
Cell 3.b. displays the evolution of the nature, background, and analysis values for the state variables
and the parameters. Cells 4.a and 4.b compute and plot diagnostics (analysis RMSE and analysis
ensemble spread).

i) Run the ETKF with parameter estimation of cell 3.a. You will need initial guesses for the
parameters. First try {σ = 9, β = 3, ρ = 30}. How do the trajectories of the state variables look? What
about the value of the parameters? Now, do the same for the initial values {σ = 6, β = 7, ρ = 14} and
{σ = 0, β = 0, ρ = 0}. What happens in this case?
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As you observed, the parameter estimation can result challenging when our guess from the param-
eters is far from the true ones, or when the behaviour of the model changes drastically after a critical
value of one or more parameters. We can help the filter if we add a random kick to the parameters in the
forecast step, allowing more possible values are explored. For example, for the parameter ρ this would
mean: ρf (tobs = j) = ρa(tobs = j − 1) + ε, where ε is a univariate random variable with distribution
N(0, α2).

j) Run the parameter estimation routine for {σ = 6, β = 7, ρ = 14} and {σ = 0, β = 0, ρ = 0}
by increasing the value of α progressively: α = {0, 0.1, . . . , 1, . . . , 10}. What happens to the estimated
model trajectory and parameter values? What happens for very large values of α?
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