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The Cryosphere

ATMOSPHERE
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Area Volume Volume
[10° km?] [10° km?] [relativ]
Ice Sheets 14.8 28.8 600
Ice Shelves 1.4 0.5 10
Sea lce 23.0 0.05 1
Snow 45.0 0.0025 0.05
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Role of Ice in Climate

v Impact on surface energy balance (global sink)

() Atmospheric circulation
() Oceanic circulation

{ Polar amplification

v Impact on gas exchange between the

\Y
\Y
\Y

atmosphere and Earth’s surface

Impact on water cycle, water supply

Impact on sea level (ice mass imbalance)

Defines boundary conditions for ecosystems




Role of Ice in Climate

V Polar amplification in CO, warming scenarios

surface eneragyv balance: temperature — ice albedo feedback)
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Role of Ice in Climate

‘ Polar amplification
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Warming from CO, doubling with
fixed albedo (FA) and with surface
albedo feedback included (VA)
(Hall, 2004)
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Pancake Ice




Pancake Ice




Old Pancake Ice




First Year Ice




Pressure Ridges




Pressure Ridges




New Ice Formation in Leads




New Ice Formation in Leads




New Ice Formation in Leads




Melt Ponds on Arctic Sea Ice




Melt ponds in the
Arctic




Sediment Patch on Arctic Sea Ice




Sea Ice Formation

Frazil ice,
Grease Ice

Pancake Ice

20 cm

Larger Floes

20 cm

One-year Ice,
Multi-year Ice

50 cm



DEPTH (m)

Deformation: Pressure Ridges
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Sea Ice Reduces Heat Exchange




Deep and Bottom Water Formation




Sea Ice Types

Class Description Thickness

New ice ice which began to grow a few hours or 0-10cm
days ago

Young ice transition between new and first-year ice 10-30 cm

First-year ice |ice of no more than one winter’s growth 30 - 200 cm

Old ice

melt; most topographic features are
smoother than on first-year ice

ice that has survived at least one summer’s | > 200 cm

Time

calm ocean : :
congelation growth nilas » young ice
frazil ice /

grease ice \
pancake cycle ice pancake ice

cover

ice

> f rSt-yea r




Vertikal Structure
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- 0-1: porous layer in clear ice

- 15-20: porous layer in clear ice
- 29-31: porous layer (pores <2 cm diam.)

- transition zone

- transition zone

- 150-175: fine-grained

- transition zone,
at 180 cm even milky layer of <2 mm thickness

- porous, fine-grained
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continued

- 0-4: porous
- transition zone

- transition zone

- refrozen void
5 cm diam.

- brine channels
and pore clusters

- transition zone

- slanted ca. 15°

- 154: layers of
pores and brine
channels

(cf. core salinity) [{|:|:]'l|:

- disturbed growth, porous

- 306-330: clear, porous ice

400

440
455

502
509
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578

599

- 346-372: numerous small pores

- 372-374: clear band, porous below

- transition zone

- 2-layered transition
zone

- 526-539: traces of
sediment in pores
(few mm diam.)

- layers of slanted
pores

- porous, slanted
brine channels



Vertikal Structure

AR8324301

194.5

- porous
- clear, no pores, retextured columnar ice retextured
enclosing granular grains

- 83-87.5: clear ice, at 87.5 internal boundary with
numerous elongated pores below (not
interfering with grain growth)



Salinity Profiles
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Salinity vs. Thickness (Age)

v T ——— —— y —
* COX, G.F N. (1972) Beacufort Seo |
O DENHARTOQG, S. (1969) NW Passoge
4 WEEKS, W.F. ond LEE, 0.S. (1958) Hopedale, Labr. J
4 KOVACS, A and KALAFUT, J. (1970) Bering Sea
® KOVACS, A. (1971) Beaufort Sea 4
a KOVACS, A et al (1972) Beoufort Sea
.
R 4
o
£
3 4
-
g . )
.
a ¢ )
" L — 1 . FA ] — N A ! S L L
o "0 20 30 40
Abb. - 3 3 Thickness  meters

Average salinity of sea ice as a function of ice thick-
ness for cold sea ice sampled during the growth season
(Cox and Weeks, 1974).

Salinity determines thermal conductivity:

)"Si = )\‘i + % with )\’i = 9.82€_O°0057T



salinity determines
electromagnetic properties:

o dietectri b
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Sea Ice: Measurement of Properties

Sea Ice Parameters

Fundamental

« albedo

* extent
 concentration
o drift

* type distribution

 thickness

>

-

Measurements

satellite imaging
(radar, passive
u-wave, optical
and IR)

> local: aircraft mea-

surements+recon-
nhaissance, ship
reports

radar and laser
altimetry, sonatr,
EM induction
sounding, drilling

<

Specific

[  characteristics of leads
and polynyas

* ice deformation and
roughness

* melt onset and freeze-up
* ice floe size distribution

* thin ice type separation,
frost flower detection

* snow properties

(thickness, grain size...)



Remote Sensing of the Cryosphere

Remote Sensing of the Cryosphere

Imaging Radiometer
Altimeter SAR VIS -IR-MW Altimeter

A i

g |
sea ice

sea ice EOE R ice distribution

topography roughness advance/retreat

roughness drift motion ice sheet
ice type margin
albedo topography
+rmnmnnt 1no mOﬁOn

: reflection
MW scattering .
emission

PETRR B Y EBorag)




What Is Directly Measured ?

INCIDENT
ENERGY

SCATTERED

REFLECTED

EMITTED

N

/\

K \ ABSORBED

TRANSMITTED
(AND REFRACTED)

Surface Reflectivity
(VIS and NIR)

Brightness Temperature
(IR, u-wave)
u-wave: T =T

. B - - - -

—

€ B
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Radar Backscattering
Coefficient

o)

+ spatial variations

of these parameters = =

e —— .




Remote Sensing of Sea Ice Parameters

VIS-

ice variable NIR IR MR SAR ALT SCAT | LASER | SONAR
extent ++ ++ ++ + ++ + ++ ++
coverage ++ ++ + ++ (+) ++ ++
floe size

++ + ++ (+) (+)
distribution
ice type + (+) (+)
ice thickness (+) + ++
ice

(+) ++ (+) ++ ++

roughness
albedo ++
drift ++ ++ ++ ++ + (+)
horiz.
resolution >10m 1 km 30 km 30 m 1 km 50 km 1m 5m




Sea Ice Passive MW Radiometry

V .Passive": The sensor consists of a
receiver and detects the natural radiation.

from Space

V The sensor measures the thermal radi-
ation of the Earth's surface in the range
of 1-100GHz (microwave region).

Atmespheric @
Emission

Surlace
Emission

V Advantages: measurements do hot
e . "
; 5\\\3‘4\%«%@ depend.on light conditions and are B
5 o o N almost independent of weather conditions.
ross - (ucotmiua)  + Wowlng ¢ (elocss o (Reoss Data are obtained with good

Temperature x (Physical Surface Atmospheric Downwelling Space
Temperature) Radiation) Atmospheric Radiation)

ot e o Spatial and temporal sampling
(global coverage of sea ice covered area
every day), stable instrument calibration.

V Disadvantage: Spatial resolution is only
poor (5-80 km, dependent on frequency
and sensor), mixed pixel problem, coastal

rantAaminatinan nfforte larnam vaninhili+a



Planck Spectrum

All substances emit electromagnetic radiation. This thermal radiation is a function of temperature.
For perfect emitters, i.e. blackbodies, the spectral radiance L, is related to the absolute temperature
through Planck’s'! Law (Fig. 6.5). L* is the energy flux density per solid angle (sr) and frequency
interval with the unit [Wm=2Hz>"1sr1].

% 1
o exp(R) -1

*
'

Radiance L [Wm-? Hz -1 sr-!]

P e 3 .
Lol L | L | I ' I

108 ,O'O ,0’2 ‘074 1,\16

Frequency [Hz]
Pluto (47K), Jupiter (87K), Mars (211), Earth (255K), Sun (6000K)



Thermal emission in MW Domain
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In the microwave domain, where hr < ET', the Rayleigh-Jeans Law applies, which represents an
approximation of the Planck Law (6.9). With exp[hw /(kT')] = 1 + hv/(kT') one finds
202k

=)

L'I/ 2 T
Therefore, the spectral radiance in the microwave domain is directly proportional to the absolute

temperature, and a definition of the so-called radiative temperature Tp in terms of the observed
radiance L, is possible.

brightness temperature 1 = ‘)—~,I~L"’ Zor:j.na'rural
for a black body k=i odies




Sea Ice Passive MW Radiometry
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Brightness = (Surface Emissivity) + (Upwelling + (Reflected +  (Reflected
Temperature x (Physical Surface Atmospheric Downwelling Space
Temperature) Radiation) Atmospheric Radiation)
x (Atmospheric Radiation) x (Double
Absorption) x (Atmospheric Atmospheric
Absorption) Absorption)
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Sea Ice Passive MW Radiomeitry

| | emissivity
T;(0) = pi(0)Ts + e; (0T, e, = 1 — p;
1 2 reflectivity

T;(0) = T, + pi(0)(T, — Ty)

Ti(0) = Ts + ei(0)(Tg —T5)

water-ice difference: I AT =To = Tm = (po = pm)(Ts = Tg) = Ap(Ts — Tj)

SN2 n—1\2
A < Ve + 1) - (n. + 1)
pui = 007
Ps — Q.64
Ap = 057

\ 4

‘ strong contrast: \ AT = —127K




Sea Ice Passive MW Radiometry

temporal evolution of sea ice:

(Jaging processes
salinity reduction
@reflectivity change

2A¢€
VE(e—=1)

Ap =p

€=3 and AE=0.6 (20% change)

Ap

= 0.34 and Ap = 0.34 x 0.07 = 0.024
P

‘ AT =54 K ‘ i.e. ice type also easily detectable




Sea Ice Concentration Algorithm

Mixed pixel: sea ice and water (C = ice concentration)

T,=(1-C)e,T, +CeT

C — TB _ewTw
eiT; _ewTw

Mixed pixel: three surface types:
First-year sea ice, multi-year sea ice, and water

Iy=(1-C,-C,)e, T, +CeT +Ce,T,

|Measur‘emen'rs at more than one frequency or polarization required |




Sea Ice Passive MW Radiometry

1.0 T iRy T
I ice growth (age)
O New lce
0.8 |- AN
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Sea Ice Passive MW Radiometry

Emissivily

sea ice with dry snow cover
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Microwave Signatures as a Function of Frequency

| Polapizati

Separation of ice and water

=50 T i . .
| A A OpenWwater i at lower frequencies, using
& 9 Eepleatice different polarizations
300 — H O Multiyearlce — T 18V T 18H
! V‘m‘ —
s | = - o T18V]-T,[18H]
Smol Py T ;o T,[18V]+T,[18H ]
5 r (Polarization Ratio)
%]
3 200
[
e L | =<3 - Separation of FY and MY ice
@ 1ce-water ol . .
10— OW djscrjmmationz,/d/. o by combination of lower and
-~ 1SCrimination . .
_ a//,/ of ice types T higher frequencies
100 ! ! [ s _
L - cp _ TBTV1-T,[18V]
Frequency, GHz
Fig. 4-18. Polarization and spectral characteristics of open water, TB [3 7V] + TB [1 8V]
first-year and multiyear sea ice as observed with the DMSP . ]
SSSIVI/)Z[eoz: January 17, 1988. (Gl’adlent RClth)

=Why are ratios used?

In order to minimize effects of physical temperature.



NASA Team Algorithm

Fractions of first- and multi-year ice:
C, = a, + a, PR+ a,GR + a,PR-GR
D

_ by +bPR+b,GR +b;PR-GR
D

C

m

D=c,+cPR+c,GR+c,PR-GR

Open water fraction ? CW =1 — Cf —C

m

The coefficients a,, b, ¢, are derived from “tie points®,
l.e. measurments over 100% FY ice, MY ice, and OW.
For the NASA Team Algorithm, this is carried out at

18GHz V+H, and 37GHz V.



Scatterplots of Brightness Temperatures

Brightness Temperature, 18 GHz , H-pol
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different polarizations higher frequencies



Sea ice extent
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Sea ice drift

2
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Applied Physics Laboratory
 University of Washington

Annual meen of ice motion in the Arctic based on 1979 - 1990 buoy data. The supenmposed lines indicate the number of
years til the ice exits the arctic basin through the Fram Strait




Sea Ice
in Fram Strait

AVHRR - VIS.

Drift
Floe size distributiuon



Sea ice drift
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Sea ice drift and -deformation from SAR-imagery

RADARSAT Geophysical Processor
System.

Due to a large swath width (~400 km) in
ScanSAR mode, an image is obtained at
» least every 7. day

i (by courtesy of Ron Kwok).
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Sea Ice Thickness




Ice thickness measuring techniques

EM sounding
Drilling , "




EMI on the ice surface

« EM31 (Geonics)

— Colil seperation
3.66m

— Frequency 9.8 kHz
— colls coplanar

— measures
conductivity and
inphase ppms




EMI on the ice surface

Germany's smallest research vessel... (the yellow one)




A normal 12h station




EM Thickness Profiles

1995 Welt ponds
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EMI ship-borne

The SIMS
(Sea Ice Monitoring System)




EMI airborne

AWT's Helicopter EM system

2 Frequencies

-3.68 kHz
-112 kHz

e r ' | 3.4 m length
— 100 kg weight
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Airborne EM ice thickness sounding




EM induction sea ice thickness sounding

g

———— Primary magnetic field

............. » Secondary magnetic field

Laser altimeter
/ (Receiver coil

Zi = dEM — dLaser
(snow + ice)

Transmitter coil

Eddy currents

®; x i AR Sea water
I. ! [ "

Olce << Ogea water
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Ice thickness variability in the Transpolar Drift:
1

1

1.1

1

2
N
a %)&\
<
¢ | .0
199 = %
99 .
& @ "
270" s = 90"
s 1 '!.;:.
u Cifg
$.0° )
mE y’ s n ’%g
. o &R ,-fq‘)s
| < 2001 ..o &
& 5 % .
0.\ f’> ; 2.
\f\ 4
Q
C. Haas

2

2.2
2.0
1.8+

1.6

2

1

2

\
3 4 5 6 7 8
Ice thickness (m)



Travel time

altimeter
range

HBLELIS s H satellite orbit

sea surface dynamic
fele £ O SUTREGE

; — hd
oD reiofly

geoid height hg

reference
ellipsoid
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Freeboard and Ice Thickness

Lidar (e. g. ICESAT)
1-3 cm precision in the vertical Radar:

Spatial resolution
ERS-1, 2 and
ENVISAT:
1.7 km
CRYOSAT:
- 250 m along-track,
. L.5 km across-track

172 m

<




Retrieval of Sea Ice Thickness

= = * Individual echos are separated
into groups “FY- and MY-ice* and
“Open water and thin ice*

. * Freeboard is obtained by subtracting
travel times over water from travel times

» Conversion of freeboard into thickness:
assumption of hydrostatic equilibrium,
using average ice and water densities, and

radar pulse reflected i L
from the ice surface (?) SNOwW ,,Chmatologles
W SN
ficet Ice thickness 7, at hydrostatic
| R % equilibrium and a snow load of
| VaVaava .
| VAAATA mass mg per unit area:
i AT
AR 5 |
w
tp=————fe+——my
Pw — PEg Pw ~— PEg




Altimeter

g Freeboard measurements by

 satellite is the only technique

which can provide sea ice

| thickness data at the time and

Length scales required by
climate research.

' Radar altimeter (ERS):




Thanks for your attention




