

Spaceborne SAR Systems for Polarimetric, Interferometric and PolinSAR Applications

Alberto Moreira

German Aerospace Center (DLR)

Microwaves and Radar Institute (HR) Postfach 1116 82230 Weßling, Germany e-mail: alberto.moreira@dlr.de

January 2004

Spaceborne SAR Systems

SEASAT NASA/JPL (USA) L-Band, 1978

ERS-1 European Space Agency (ESA) C-Band, 1991-2000

J-ERS-1 Japanese Space Agency (NASDA) L-Band, 1992-1998

SIR-C/X-SAR NASA/JPL, L- and C-Band (quad) DLR / ASI, X-band April and October 1994

RADARSAT-1 Canadian Space Agency (CSA) C-Band, 1995-today

ERS-2 European Space Agency (ESA) C-Band, 1995-today

SRTM NASA/JPL (C-Band), DLR (X-Band) February 2000

ENVISAT / ASAR European Space Agency (ESA) C-Band (dual), 2002-today

ALOS / PALSAR Japanese Space Agency (JAXA) L-Band (quad), 2005

TerraSAR-X German Aerospace Center (DLR) / Astrium X-Band (quad), 2006

RADARSAT-II Canadian Space Agency (CSA) C-Band (quad), 2006

CosmoSkymed ASI / Alenia X-Band (dual), 2006

ENVISAT/ASAR

ESA's ENVISAT

Most ambitious Remote Sensing satellite for environmental monitoring
Unique combination of 10 instruments

Active Phased Array Antenna

ASAR Antenna consisting of 320 Transmit/Receive Modules in 32 rows and 10 elements per row

ASAR Operation Modes

ASAR imaging modes

	IS 1	IS 2	IS 3	IS 4	IS 5	IS 6	IS 7
PRF [Hz]	1678	1645	2096	1680	2082	1698	2097
ASAR center look angle	16.6°	20.1°	25.2°	29.5°	32.8°	35.6°	38.0°
ASAR swath width in ground range [km]	103.7	103.3	82.3	88.6	64.5	71.0	56.7

Electronic Beam Forming

Electronic Beam Forming

ASAR Operation Modes

ENVISAT ASAR: First Image Example

Oil Detection with ASAR

Single-Pol versus Polarimetric ASAR Image

Single-Pol versus Polarimetric ASAR Image

Single-Pol versus Polarimetric ASAR Image

ALOS/PALSAR

Launch Date September 2005 **ALOS Satellite System** Launch Vehicle H-IIA **Spacecraft Mass** about 4,000kg Generated about 7kW Elec. Power at EOL **Data Relay Star Tracker** Antenna Orbit Sun Synchronous **GPS** Antenna Altitude 691.65km PALSAR **Repeat Cycle** 46 days PRISM **AVNIR-2 Solar Array Paddle** Velocity Nadir PRISM : Panchromatic Remote-sensing **Instrument for Stereo Mapping AVNIR-2: Advanced Visible and Near Infrared Radiometer type 2** PALSAR: Phased Array type L-band Synthetic Aperture Radar

© JAXA

ALOS / PALSAR

Frequency Band Width Modes Antenna beams Image Width Incidence Tr. power Resolution Data rate	1270 MHz 28/14MHz FBS,FBD,POL, SCAN 18 (STRIP)+5 SCANs 70Km 7.7 - 60 degrees 2Kw 9m(2L) 240Mbps	
Fine mode (#1 - #18) Direct downlink mode (Polarimetric mode (# #1 Off-nadir : 9.9 deg. (nominal operation	ScanSAR mode (3scans - 5scans) #1 - #18) 1 - #12) Subsatellite track 90 km 90 km 90 km 50.8 deg. : 34.3 deg.)	6.5 deg. #5
	#18	© JAXA

Single Pass Polarimetric SAR Interferometry

Single Pass Polarimetric SAR Interferometry

ALOS/PALSAR ($\gamma_{tmp} = 0.7, 70 \text{ m x } 70 \text{ m}$)

RADARSAT-II

RADARSAT-2

RADARSAT-2 Imaging Modes

All modes will be available in selective single or dual polarization.

All modes will be available on either side of the satellite.

500 km

RADARSAT-2

Ultra-fine Imaging

Comparison between RADARSAT-1 Fine beam (10 m resolution) and simulated RADARSAT-2 Ultra-fine beam (3 m resolution)

RADARSAT-2

Polarimetric Application: Sea Ice

DETTWILER

- 1- HH polarization image showing enhanced ice-type information.
- 2- HV polarization image showing enhanced ice-edge information.
- 3- H/A/α Maximum Likelihood classification results after five iterations.

Data acquired from C-band Shuttle Imaging Radar (SIR) of the west coast of Newfoundland, April, 1994.

Study performed by MDA through the Earth Observation Application Development Program (EOADP) of the the Canadian Space Agency.

TerraSAR-X

TerraSAR-X

 Private Public Partnership between DLR and ASTRIUM

 Goal is to establish a sustainable Global EO information service

- Technology demonstrators:
 - DESA: X-Band Front-End Demonstrator
 - TOPAS: on-board SAR Processing and Storage Demonstrator (1999-2002)

 Continuation of a successful X-Band technology program in Germany

TerraSAR-X Imaging Modes

Fight direction

Resolution: $3 \text{ m} \times 1,5 \text{ m} \dots 3,5 \text{ m}$ Scene Size: $100 \text{ km} \times 30 \text{ km}$

Strip Map Mode

Resolution: 3 m \times 1,5 m ... 3,5 m Scene Size: 100 km \times 100 km

Flight Direction

Trees Lane

Resolution: 1 m \times 1,5 m ... 3,5 m Scene Size: 5 km...10 km \times 10 km

- The data collection incidence angle range is from 15° to 60°
- Dual polarisation data acquisition is possible in all operational modes
- 300 MHz experimental mode with 0.5 m slant range resolution
- Further experimental modes are feasible due to the Dual Receiving
 Antenna

TerraSAR-L

The Spacecraft

Snapdragon

- Mass: 2700 kg
 - 1800 kg p/l
 - 900 kg L-SAR
- Antenna: 32 m²
- Power: 5 kW
 - 4.5 kW L-SAR
- On-board Memory: 622
- Data downlink: 300 MHz

L-SAR Modes

- QS, DS, DW pol. + high radiometric performance
- IW, IS for interferometry IW as main mode
- WV for wave spectra

Future SAR Systems

Future SAR Systems

Bistatic and Multistatic SAR Systems

- Bistatic Systems: spatial separation between transmitter and receiver
- Multistatic Systems: multiple transmitters/receivers

Fully active system:

• TechSAT21, TanDEM-X, RADARSAT-2/3

TanDEM-X

TanDEM-X

Response to DLR Call for Proposals for the next National Earth Observation Mission

Interferometry with TanDEM-X

Polarimetric Interferometry: Performance Estimation

Micro-Satellite Concept

Global High Resolution Interferometry

Single-Pass Cross-Track Interferometry with Multistatic Satellite Configuration:

- no temporal decorrelation (as opposed to repeat-pass interferometry)
- no atmospheric distortions (as opposed to repeat-pass interferometry)
- large interferometric baselines (as opposed to e.g. SRTM)

Example: Interferometric Cartwheel

Master Satellite:

•e.g. circular orbit

Receiver Satellites:

- •elliptical orbits with equal eccentricities
- arguments of apogee differ by 120° for a Cartwheel with 3 satellites
- very stable maximum vertical baseline for all orbital positions
- relative movement of receivers may be approximated by CW-ellipse:

 coupling of along-track and acrosstrack baselines

Multi-Baseline Approach

First Demonstration of Airborne SAR-Tomography

Upper image: Polarimetric color composite (L-band) of a tomographic slice in the height/azimuth-direction HH+VV, HH-VV, 2*HV

Lower image: Schematic view of the imaged area

* A. Reigber und A. Moreira: "First Demonstration of Airborne SAR Tomography using Multibaseline L-Band Data". IEEE TGRS, Vol. 38 (5), Sept. 2000

High-Resolution Wide-Swath

ScanSAR Imaging Mode

•Standard approach for wide swath imaging

Basic idea:

-Divide wide swath in multiple subswaths

-Scan subswaths in sequential order by appropriate beam steering in elevation (e.g. by using T/R modules)

•Shares full aperture synthesis time between multiple swaths:

 \Rightarrow Reduced azimuth resolution

Solutions to Wide Swath SAR Imaging

High Resolution with Dual Receive Antenna

Wavelength	3.1 cm
Antenna Length (Tx)	2.4 m (4.8 m / 2)
Sub-Aperture Length (Rx)	2.4 m (4.8 m / 2)
PRF	3600 Hz
Velocity	7600 m/s
Channel SNR	20 dB

DLR

with reconstruction

Satellite Constellations

Geostationary Illuminator / LEO Receivers

Basic Idea:

DLR

- constant illumination by geostationary transmitter
- signal reception by multiple low-cost receivers

Receivers:

- low-cost micro-satellites
- small antennas
- passive (receive only)
- low earth orbit

Illuminator:

- geostationary orbit
- high Tx power (CW)
- large antenna area
- optional: steerable antenna

Advantages:

- substantially improved revisit times without cost explosion
- multiple missions may share one illuminator

Geostationary Illuminator: Sensitivity

No Barris	
Wavelength	3.1 CM
Max. Bandwidth	300 MHz
Average Transmit Power	1000 W
Antenna Size Tx	100 m ²
Antenna Size Rx	6 m ²
Noise Figure + Losses	5 dB
Receiver Altitude	400 km
Ground Range Resolution	3 m
Max. Res. Cell Diameter	6 m

An Alternative: MEO Orbits

3 revisits / day (for 1 satellite)

- Example: Orbit with an inclination of 35° and 5 cycles/day (altitude: ~ 8000 km)
- Integration time for 3m azimuth resolution: ~ 10 sec
- NESZ: ~ -30dB (X-Band, $P_{Tx} = 1 \text{ kW}, A_{Tx} = 100 \text{ m}^2$
- Huge simultaneous access area
- Long observation times enable change detection in one pass

MEO SAR Constellations are an interesting alternative to the geostationary illuminator concept

Multi-static SAR

- enables smaller and cheaper satellites
- provides more information and increased sensitivity
- benefits from advanced technologies

Digital beam forming

- makes full use of information at antenna array
- improves performance

Satellite constellations

- may share common illuminator
- symbiotic use of platforms (e.g. with Nav./Com.)
- allow for decreased revisit times