SAR Interferometry and applications

Fabio Rocca

Dipartimento di Elettronica e Informazione Politecnico di Milano

Interferometry measurement of travel path differences The target's signature is removed

Short term single pass, seconds, 30', 1 day, weeks

coherence : Vegetation, surface properties
parallaxis (baseline) : Digital Elevation Models

Long term months, seasons, one to several years

- co-seismic or volcanic motions (Line Of Sight, 2D, 3D)
- subsidence (mm/year); slow landslides (cm mm/year)
- building pre-collapses, cracks, excavations effects

Summary

Interferograms, Wide Swath : Bam, Algeria

Wavevelength and revisiting times: Digital elevation models and ground motion retrieval in Tokyo Further analyses of the 3 days data in Rome

A simple model to evaluate the implications

Conclusions

Bam - Iran: Dec. 26, 2003 earthquake

SAR Interferometry, Polinsar Meeting , January 17, 2005

Coherence (forestry): the log histogram is superposed

ASAR WSM/WSM interferogram: phases

VS (time-Varying Scatterers) and Permanent Scatterers that yield DEM, orbits, and motion

Digital elevation models

Old rivers in Istanbul (shales liquefaction)

SAR Interferometry, Polinsar Meeting , January 17, 2005

SAR Interferometry, Polinsar Meeting , January 17, 2005

SAR Interferometry, Polinsar Meeting , January 17, 2005

Ground motion

Berkeley Hills: what goes up..

Fig. 1. (A) Map view of PS-InSAR range-change rate measurements for the study area. Underlying image is an orthorectified air photo of the area; HF trace is indicated by a red line (28). (B) Map view of interpolated range-change rates (colors) adjusted for shallow creep (4 to 5 mm/year) along the HF and uplift (0.4 mm/year) of the EBH (black dots show PS locations). Yellow outlines show the location of mapped active landslides (14). Dashed box indicates the extent of panels in Fig. 2. N, M, and S denote locations of the northern, middle, and southern landslides investigated. Red star shows location of $M_{\rm L} = 4.1$ earthquake on 4 December 1998 (8, 18).

www.sciencemag.org SCIENCE VOL 304 25 JUNE 2004

1953

...then goes down: landslides in Berkeley

SAR Interferometry, Polinsar Meeting , January 17, 2005

Ground motion

RADARSAT C-band HH pol. 30 images (ERS-like mode) 24 days revisiting period 2.5 years time interval ERS1/2 C-band VV pol. 30 images 35 days revisiting period 10 years time interval J-ERS L-band HH pol. 46 images 44 days revisiting period 6 years time interval

Accuracy of the measured orbits

Precision of C band measurements: ~ 3mm

SAR Interferometry, Polinsar Meeting , January 17, 2005

3 days data in Rome

ERS: 3 vs 35 days revisiting interval – PS elevation

3 days

35 days

ERS: 3 vs 35 days revisiting interval - PS motion

3 days

35 days

SAR Interferometry, Polinsar Meeting , January 17, 2005

DEM (estimated precision: 2 m)

Height -18.50 - 20.90 • 20.91 - 60.79 • 60.80 - 100.67 100.68 - 134.18 • 134.19 - 172.07 172.08 - 201.59 201.60 - 229.12 229.13 - 258.63 258.64 - 294.13 294.14 - 332.03 332.04 - 369.92 369.93 - 414.20 • 414.21 - 473.23 473.24 - 557.50 557.51 - 641.00 641.01 - 797.50

SAR Interferometry, Polinsar Meeting , January 17, 2005

The model

Temporal behavior of the scatterers

Revisiting time (days)

SAR Interferometry, Polinsar Meeting, January 17, 2005

nugget

Mean

Tau

p = Probability of phase shifts greater than π

SAR Interferometry, Polinsar Meeting , January 17, 2005

New missions

- C band yields sub-millimeter motion and sub-meter elevation accuracy in populated areas.
 - L band revisiting intervals may be much longer. However, a much lower noise level is needed to obtain small motion sensitivity; optimal for forest penetration.
- X band has lower penetration; revisiting intervals should be short to keep coherence and avoid alias. Constellations will help to reduce conflicts.

Better ground motion monitoring

Competing Techniques	TIME Presence	SPACE Location	TIME Continuity	SPACE Continuity
GPS - Galileo	- after	+ at choice	+	-
Interferometry	+ before	- random	-	+

Improving interferometry

- Regular and frequent revisiting times
- Synchronized SCANSAR for wide areas monitoring
- Better artificial reflectors
- Geosynchronous illuminator, geosynchronous or LEO receivers

Better Digital Eelevation Models Competitors:

Optical, high resolution LIDAR Airplane, UAV interferometry (all times, everywhere (shallow penetration (availability

?)

?)

?)

Satellite interferometry must achieve submetric precision to stay on the market

Proposed Solutions

Multistatic Configurations Tandem in X band, Cartwheel, Pendulum etc.

Conclusion

With more or better:

Revisiting times, spatial resolution LOS directions, frequencies, baselines multistatic receivers stable artificial reflectors

SAR interferometry will even better fulfill its promises.

Many useful results have been achieved already; new services are operational throughout the world.