

SAR POLARIMETRY And APPLICATIONS

Eric Pottier IETR – UMR CNRS 6164 - University of Rennes 1 Image and Remote Sensing Dept. – SAPHIR Team (SAR Polarimetry Holography Interferometry Radargrammetry)

ESA – ESRIN Frascati, 17 – 21 January 2005

© IETR K E. Pottier, L. Ferro-Famil (01/2005)

© IETR CAPIE E. Pottier, L. Ferro-Famil (01/2005)

POLARIMETRIC REMOTE SENSING

QUALITATIVE ANALYSIS

See.

INSA

RADAR POLARIMETRY

POLARIMETRIC AIRBORNE SAR SENSORS

AES1 InterMap Technologies (D) GulfStream Commander X-Band (HH), P-Band (Quad)

AIRSAR NASA / JPL (USA) DC8 P, L, C-Band (Quad)

AuSAR - INGARA D.S.T.O (Aus) DC3 (97) KingAir 350 (00) Beach 1900C X-Band (Quad)

DOSAR EADS / Dornier GmbH (D) DO 228 (89), C160 (98), G222 (00) S, C, X-Band (Quad), Ka-Band (VV)

ESAR DLR (D) DO 228 P, L, S-Band (Quad) C, X-Band (Sngl)

PHARUS TNO - FEL (NL) CESSNA – Citation II C-Band (Quad)

EMISAR DCRS (DK) G3 Aircraft L, C-Band (Quad)

PISAR

NASDA / CRL (J)

GulfStream

L, X-Band (Quad)

MEMPHIS / AER II-PAMIR FGAN (D) Transal C160 Ka, W-Band (Quad) / X-Band (Quad)

RAMSES

ONERA (F)

Transal C160 P, L, S, C, X, Ku, Ka, W-Band (Quad)

STORM UVSQ / CETP (F) Merlin IV C-Band (Quad)

SAR580 Environnement Canada (OA) Convair CV-580 C, X-Band (Quad)

POLARIMETRIC SPACEBORNE SAR SENSORS

SIR-C NASA / JPL (USA) April 1994 (10 days) October 1994 (10 days) L, C-Band (Quad)

ENVISAT / ASAR ESA (EU) 2002 C-Band (Sngl / Twin) HH, VV, (HH,VV), (HH,HV), (HV,VV)

ALOS / PALSAR JAXA (J)

L-Band HH,VV, (HH,HV), (VV,VH)

TERRASAR

X-Band (Twin) (HH,VV), (HH,HV), (HV,VV) L-Band (Quad)

RADARSAT 2 CSA / MDA (CA) C-Band (Quad)

POLARIMETRIC DESCRIPTORS

© IETR C. Pottier, L. Ferro-Famil (01/2005)

TARGET VECTORS

PAULI SCATTERING VECTOR
$$\underline{k} = V([S]) = \frac{1}{2}Trace([S][\psi_P])$$

SET OF 2x2 COMPLEX MATRICES FROM THE PAULI MATRICES GROUP

$$\begin{bmatrix} \psi_P \end{bmatrix} = \left\{ \sqrt{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \sqrt{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \sqrt{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \sqrt{2} \begin{bmatrix} 0 & -j \\ j & 0 \end{bmatrix} \right\}$$
$$\boxed{k} = \frac{1}{\sqrt{2}} \begin{bmatrix} S_{XX} + S_{YY} & S_{XX} - S_{YY} & S_{XY} + S_{YX} & j(S_{XY} - S_{YX}) \end{bmatrix}^T$$

Advantage: Closer related to physical properties of the scatterer

Note: Also known as <u>k</u>_{4P}

BISTATIC CASE

MONOSTATIC CASE

A0, B0+B, B0-B : HUYNEN TARGET GENERATORS

[T] is closer related to Physical and Geometrical Properties of the Scattering Process, and thus allows a better and direct physical interpretation

TARGET GENERATORS

PHYSICAL INTERPRETATION

$$T_{11} = 2A_{\theta} = \left|S_{XX} + S_{YY}\right|^2$$

$$T_{33} = B_0 - B = 2 \left| S_{XY} \right|^2$$

$$T_{22} = B_0 + B = \left| S_{XX} - S_{YY} \right|^2$$

SAN FRANCISCO BAY

L-band 1988

DC8 P, L, C-Band (Quad)

TARGET GENERATORS

TARGET GENERATORS

Pauli Color Coding

ELLIPTICAL BASIS TRANSFORMATION

Pauli Color Coding (H,V)

Ernst LÜNEBURG (PIERS95 - Pasadena)

© IETR E. Pottier, L. Ferro-Famil (01/2005)

COHERENCY MATRIX

CON-SIMILARITY TRANSFORMATION

$$\begin{bmatrix} T_{(B,B_{\perp})} \end{bmatrix} = \begin{bmatrix} U_{3(A,A_{\perp}) \mapsto (B,B_{\perp})} \end{bmatrix} \begin{bmatrix} T_{(A,A_{\perp})} \end{bmatrix} \begin{bmatrix} U_{3(A,A_{\perp}) \mapsto (B,B_{\perp})} \end{bmatrix}^{-1}$$

SIMILARITY TRANSFORMATION

$$\left[U_{\mathfrak{Z}(A,A_{\perp})\mapsto(B,B_{\perp})}
ight]$$

U(3) SPECIAL UNITARY ELLIPTICAL BASIS TRANSFORMATION MATRIX

© IIIIR KAR E. Pottier, L. Ferro-Famil (01/2005)

$$\begin{bmatrix} U \end{bmatrix} = \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} \cos(\tau) & j\sin(\tau) \\ j\sin(\tau) & \cos(\tau) \end{bmatrix} \begin{bmatrix} e^{-j\alpha} & 0 \\ 0 & e^{j\alpha} \end{bmatrix} \\ \begin{bmatrix} U_2(\phi) \end{bmatrix} \begin{bmatrix} U_2(\tau) \end{bmatrix} \begin{bmatrix} U_2(\alpha) \end{bmatrix}$$

SPECIAL UNITARY SU(3) GROUP

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(2\phi) & \sin(2\phi) \\ 0 & -\sin(2\phi) & \cos(2\phi) \end{bmatrix} \begin{bmatrix} \cos(2\tau) & 0 & j\sin(2\tau) \\ 0 & 1 & 0 \\ j\sin(2\tau) & 0 & \cos(2\tau) \end{bmatrix} \begin{bmatrix} \cos(2\alpha) & -j\sin(2\alpha) & 0 \\ -j\sin(2\alpha) & \cos(2\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} U_3(2\phi) \end{bmatrix} \begin{bmatrix} U_3(2\phi) \end{bmatrix} \begin{bmatrix} U_3(2\phi) \end{bmatrix} \begin{bmatrix} U_3(2\alpha) \end{bmatrix}$$

POLARIMETRIC GOLDEN NUMBER

© ITTR SAME E. Pottier, L. Ferro-Famil (01/2005)

ଫ୍ଟ୍ର

INSA

INVERSITE DE RENNE

PURE TARGET – MONOSTATIC CASE

$$\begin{bmatrix} T \end{bmatrix} = \underline{k} \cdot \underline{k}^{*T} = \begin{bmatrix} 2A_0 & C - jD & H + jG \\ C + jD & B_0 + B & E + jF \\ H - jG & E - jF & B_0 - B \end{bmatrix}$$

3x3 HERMITIAN MATRIX - RANK 1

$$2A_{0}(B_{0} + B) - C^{2} - D^{2} = 0 \qquad 2A_{0}(B_{0} - B) - G^{2} - H^{2} = 0$$

$$-2A_{0}E + CH - DG = 0 \qquad B_{0}^{2} - B^{2} - E^{2} - F^{2} = 0$$

$$C(B_{0} - B) - EH - GF = 0 \qquad -D(B_{0} - B) + FH - GE = 0$$

$$2A_{0}F - CG - DH = 0 \qquad -G(B_{0} + B) + FC - ED = 0$$

$$H(B_{0} + B) - CE - DF = 0$$

POLARIMETRIC TARGET DIMENSION

SCATTERING POLARIMETRY

SAPHIR

UNVERSITE DE RENNES

QUALITATIVE ANALYSIS

SPECKLE PHENOMENON J ISTORTION OF THE INTERPRETATION

SPECKLE REDUCTION (RADIOMETRIC RESOLUTION) E. Pottier, L. Ferro-Famil (01/2005)

DETAILS PRESERVATION (SPATIAL RESOLUTION)

SPECKLE REDUCTION

MULTI-LOOK SAR PROCESSING (BoxCar)

Averaging Amplitude / Intensity (Not complex images) of neighboring pixels

Good Noise Smoothing

Spatial Resolution Loss - blurring edges - erasing thin lines Loss of linear or point features ...

SPECKLE : MULTIPLICATIVE NOISE MODEL

« SPECKLE is a scattering phenomenon and not a noise. However, from the image SAR processing point of vue, the speckle can be modeled as multiplicative noise for extended target » (Lee, IGARSS-98)

$$\underline{y} = \begin{bmatrix} y_{HH} \\ y_{HV} \\ y_{VV} \end{bmatrix} = \begin{bmatrix} n_{HH} & 0 & 0 \\ 0 & n_{HV} & 0 \\ 0 & 0 & n_{VV} \end{bmatrix} \begin{bmatrix} x_{HH} \\ x_{HV} \\ x_{VV} \end{bmatrix} = \begin{bmatrix} x_{HH} n_{HH} \\ x_{HV} n_{HV} \\ x_{VV} n_{VV} \end{bmatrix}$$

$$\underbrace{\uparrow}_{SCATTERING} \qquad NOISE \qquad REFLECTIVITY \\ DENSITY \qquad DENSITY$$

$$Y_{pqpq} = y_{pq} y_{pq}^{*} = X_{pqpq} v_{pqpq} \quad INTENSITY = MULTIPLICATIVE MODEL$$

$$Y_{pqrs} = y_{pq} y_{rs}^{*} = X_{pqrs} v_{pqrs} \quad NOISE \quad MODEL ????$$

POLARIMETRIC VECTORIAL SPECKLE FILTER

REFINED FILTER

POLARIMETRIC SPECKLE FILTERING IS NOT AN EXACT SCIENCE SUBJECTIVE, IMAGE DEPENDENT

Quantitative Criteria (J.S. Lee - IGARSS 98)

- >Speckle Reduction (E.N.L)
- Edge Sharpness Preservation
- Line and Point Target Contrast Preservation
- Retention of Mean Values in Homogeneous Regions
- ➢ Retention of Texture Information
- Retention of Polarimetric Information (co, cross-correlations)
- Computational Efficiency
- Implementation Complexity

$$\left[\hat{T}\right] = E(\left[T\right]) - k\left[E(\left[T\right]) - \left[T\right]\right]$$

THE POLARIMETRIC SPECKLE LEE FILTER IS TODAY A GOOD COMPROMISE

INSA

SAN FRANCISCO BAY JPL - AIRSAR L-band 1988

J.S. Lee, M.R. Grunes and G. De Grandi, "Polarimetric SAR Speckle Filtering and Its Impact on Terrain Classification" *IEEE TGRS*, September 1999

SAN FRANCISCO BAY JPL - AIRSAR L-band 1988

J.S. Lee, D.L. Schuler, T.L. Ainsworth, M.R. Grunes, « Scattering Model Based Speckle Filetring of Polarimetric SAR Data" *EUSAR 2004, Ulm, Germany, May 2004*

Pierre Karler, L. Ferro-Famil (01/2005)

INSA

MULTIPLICATIVE-ADDITIVE NOISE MODEL

PIETR SAPHR E. Pottier, L. Ferro-Famil (01/2005)

MULTIPLICATIVE-ADDITIVE NOISE MODEL

L-band (1.3 GHz) fully PoISAR data. E-SAR system. Oberpfaffenhofen test area (D)

SAPH

© IETR E. Pottier, L. Ferro-Famil (01/2005)

QUALITATIVE ANALYSIS

INSA

TARGET DECOMPOSITIONS

🙀 📢 E. Pottier, L. Ferro-Famil (01/2005)

TARGET DECOMPOSITIONS

TARGET DECOMPOSITIONS

©

 $H/A/\underline{\alpha}$ DECOMPOSITION

TARGET VECTOR
$$\underline{k} = \frac{1}{\sqrt{2}} \begin{bmatrix} S_{XX} + S_{YY} & S_{XX} - S_{YY} & 2S_{XY} \end{bmatrix}^T$$

LOCAL ESTIMATE OF
THE COHERENCY MATRIX
$$\langle [T] \rangle = \frac{1}{N} \sum_{i=1}^{N} \underline{k}_{i} \cdot \underline{k}_{i}^{*T} = \frac{1}{N} \sum_{i=1}^{N} [T_{i}]$$

EIGENVECTORS / EIGENVALUES ANALYSIS

$$\langle [T] \rangle = [U_{3}] [\Sigma] [U_{3}]^{-1} = \begin{bmatrix} u_{1} & u_{2} & u_{3} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{bmatrix} \begin{bmatrix} u_{1} & u_{2} & u_{3} \end{bmatrix}^{*T}$$

$$\bigcup_{i=1}^{ORTHOGONAL} \underset{k_{i} > \lambda_{2} > \lambda_{3}}{ORTHOGONAL} \underset{k_{i} > \lambda_{2} > \lambda_{3}}{P_{i} = \frac{\lambda_{i}}{\sum_{k=1}^{3} \lambda_{k}}} \xrightarrow{P_{i} = \frac{\lambda_{i}}{\sum_{k=1}^{3} \lambda_{k}}} P_{i} = \frac{\lambda_{i}}{\sum_{k=1}^{3} \lambda_{k}} \xrightarrow{P_{i} = \frac{\lambda_{i}}{\sum_{k=1}^{3} \lambda_{k}}} P_{i} = \frac{\lambda_{i$$

H/A/ $\underline{\alpha}$ DECOMPOSITION

3 ROLL INVARIANT PARAMETERS

ENTROPY

ANISOTROPY

$\underline{\alpha}$ parameter

$H/A/\underline{\alpha}$ DECOMPOSITION

TYPE OF SCATTERING PROCESS

0.25

0.5

3 MECHANISMS

H(1-A)

HA

QUALITATIVE ANALYSIS

WISHART CLASSIFIER

°ks

UNIVERSITE DE RENIVES

Target Vector

$$\underline{X} = \begin{bmatrix} S_{HH} & \sqrt{2}S_{HV} & S_{VV} \end{bmatrix}^T \qquad P(\underline{X}) = \frac{1}{\pi^3 \| [C] \|} e^{-\underline{X}^{*T} [C]^{-1} \underline{X}}$$
$$\underline{k} = \frac{1}{\sqrt{2}} \begin{bmatrix} S_{HH} + S_{VV} & S_{HH} - S_{VV} & 2S_{HV} \end{bmatrix}^T \qquad P(\underline{k}) = \frac{1}{\pi^3 \| [T] \|} e^{-\underline{k}^{*T} [T]^{-1} \underline{k}}$$

$$[T] \rangle = \frac{1}{N} \sum_{i=1}^{N} \underline{k}_{i} \cdot \underline{k}_{i}^{*T} = \frac{1}{N} \sum_{i=1}^{N} [T_{i}]$$

$$P(\langle [T] \rangle / [T_{m}]) = \frac{L^{Lp} |\langle [T] \rangle|^{L-p} e^{-LTr([T_{m}]^{-1} \langle [T] \rangle)}}{\pi^{\frac{p(p-1)}{2}} \Gamma(L) ... \Gamma(L-p+1) [T_{m}]^{L}}$$

$$COMPLEX WISHART DISTRIBUTION$$

$$L: Number of Look p: Polarimetric Dimension$$

WISHART CLASSIFIER

$$P(\langle [T] \rangle / [T_m]) = \frac{L^{Lp} |\langle [T] \rangle|^{L-p} e^{-LTr([T_m]^{-1} \langle [T] \rangle)}}{\pi^{\frac{p(p-1)}{2}} \Gamma(L) \dots \Gamma(L-p+1) [T_m]^L}$$

SUPERVISED WISHART CLASSIFIER (Lee 1994)

BAYES MAXIMUM LIKELIHOOD CLASSIFICATION PROCEDURE

$$\langle [T] \rangle \in [T_m]$$
 if $d_m(\langle [T] \rangle) < d_j(\langle [T] \rangle)$ $\forall j \neq m$

with

🐝 E. Pottier, L. Ferro-Famil (01/2005)

$$d_m(\langle [T] \rangle) = LTr([T_m]^{-1} \langle [T] \rangle) + L\ln([T_m]) - \ln(P([T_m])) + K$$

cyks insa O

POLARIMETRIC REMOTE SENSING

Alpha

> Cluster Center of the class mass (Lee 1998) UNVERSITE DE RENNES

SAN FRANCISCO BAY JPL - AIRSAR L-band 1988

4th ITERATION

 $B_0 + B$ $B_0 - B$

©

 $2A_{\theta}$

2 Successive k - mean Classification procedures

C9

C10

C11

C12

C13

C14

C15

C16

SAN FRANCISCO BAY JPL - AIRSAR L-band 1988

4th ITERATION

© IIIIR E. Pottier, L. Ferro-Famil (01/2005)

H / A / $\underline{\alpha}$ - WISHART CLASSIFIER

SAN FRANCISCO BAY JPL - AIRSAR L-band 1988

 $2A_0 \qquad B_0 + B \qquad B_0 - B$

© IIIIR E. Pottier, L. Ferro-Famil (01/2005)

ICE AREA JPL - AIRSAR L-band

 $2A_0 \qquad B_0 + B \qquad B_0 - B$

© IIIIR KARF E. Pottier, L. Ferro-Famil (01/2005)

H / A / $\underline{\alpha}$ - WISHART CLASSIFIER

DEATH VALLEY JPL - AIRSAR L-band

 $2A_0 \qquad B_0 + B \qquad B_0 - B$

© IETR E. Pottier, L. Ferro-Famil (01/2005)

OBERPFAFFENHOFEN - ESAR L-band

 $2A_{\theta}$

H / A / $\underline{\alpha}$ and WISHART CLASSIFIER

© IETR E. Pottier, L. Ferro-Famil (01/2005)

OBERPFAFFENHOFEN - ESAR L-band

H / A / $\underline{\alpha}$ and WISHART CLASSIFIER

H / A / $\underline{\alpha}$ - WISHART CLASSIFIER

Cesa POLinSAR Project

TRAUNSTEIN - ESAR L-band

H / A / $\underline{\alpha}$ and WISHART CLASSIFIER

 $2A_0 \qquad B_0 + B \qquad B$

 $B_0 - B$

POLARIMETRIC REMOTE SENSING

Unsupervised Classification Preserving Scattering Mechanisms

J.S. Lee, M. R. Grunes, E. Pottier, L. Ferro-Famil, "Unsupervised Terrain Classification Preserving Polarimetric Scattering Characteristics," IEEE TGRS, April 2004

No.

ETR 📢 E. Pottier, L. Ferro-Famil (01/2005)

FREEMAN DECOMPOSITION

Courtesy of Dr J.S Lee

|HH-VV|, |HV|, |HH+VV|

Freeman and Durden

A. Freeman and S.L. Durden, "A Three-Component Scattering Model for Polarimetric SAR Data" IEEE TGRS, vol. 36, no. 3, May 1998

PROCEDURE – FLOW CHART

°¢¢/

INSA

UNIVERSITE DE RENINES

© IIIIR KAR E. Pottier, L. Ferro-Famil (01/2005)

UNIVERSITE DE RENIVES

Courtesy of Dr J.S Lee

FREEMAN - WISHART CLASSIFIER

Courtesy of Dr J.S Lee

 $2A_0 \qquad B_0 + B \qquad B_0 - B$

4th Iteration (15 classes)

POLARIMETRIC REMOTE SENSING

DLR E-SAR L Band In-Pol SAR (1.5m x 3m) – Baseline 5m

POL-SAR INFORMATION

IN-SAR INFORMATION

INSA

COMPLEMENTARY INFORMATION

© IETR E. Pottier, L. Ferro-Famil (01/2005)

HETEROGENEOUS AREA

DIFFERENT POLARIMETRIC SCATTERING MECHANISMS

HOMOGENEOUS AREA

CONSTANT INTERFEROMETRIC COHERENCE

HOMOGENEOUS AREA

SAME POLARIMETRIC SCATTERING MECHANISMS

© IETR KIEF E. Pottier, L. Ferro-Famil (01/2005)

HETEROGENEOUS AREA

$$\underbrace{\underline{k}} = \begin{bmatrix} \underline{k}_{1} \\ \underline{k}_{2} \end{bmatrix} \xrightarrow{\text{POLARIMETRIC}}_{\substack{\text{INTERFEROMETRIC} \\ \text{INTERFEROMETRIC} \\ \text{TARGET VECTOR}} \\
\underbrace{\left\langle \begin{bmatrix} T_{6} \end{bmatrix} \right\rangle = \left\langle \underline{k} \cdot \underline{k}^{T*} \right\rangle = \begin{bmatrix} \left\langle \underline{k}_{1} \cdot \underline{k}^{T*} \right\rangle & \left\langle \underline{k}_{1} \cdot \underline{k}^{T*} \right\rangle \\ \left\langle \underline{k}_{2} \cdot \underline{k}^{T*} \right\rangle & \left\langle \underline{k}_{2} \cdot \underline{k}^{T*} \right\rangle \end{bmatrix} = \begin{bmatrix} \left\langle \begin{bmatrix} T_{1} \end{bmatrix} & \left\langle \begin{bmatrix} \Omega_{12} \end{bmatrix} \right\rangle \\ \left\langle \begin{bmatrix} \Omega_{12} \end{bmatrix}^{T*} \right\rangle & \left\langle \begin{bmatrix} T_{2} \end{bmatrix} \right\rangle \end{bmatrix} \\
\text{POLARIMETRIC INTERFEROMETRIC COHERENCY MATRIX (6x6)}$$

 $\begin{array}{c} \left< \begin{bmatrix} T_1 \end{bmatrix} \right> & \text{HERMITIAN POLARIMETRIC COHERENCY MATRIX (3x3)} \\ \left< \begin{bmatrix} T_2 \end{bmatrix} \right> & \text{HERMITIAN POLARIMETRIC COHERENCY MATRIX (3x3)} \\ \left< \begin{bmatrix} \Omega_{12} \end{bmatrix} \right> & \text{NON HERMITIAN POLARIMETRIC INTER-COHERENCY MATRIX (3x3)} \end{array}$

COMPLEX WISHART DISTRIBUTION

DUAL CHANNELS POLINSAR UNSUPERVISED SEGMENTATION

$$\langle [T_6] \rangle = \langle \underline{k} \cdot \underline{k}^{T*} \rangle = \begin{bmatrix} \langle \underline{k}_1 \cdot \underline{k}_1^{T*} \rangle & \langle \underline{k}_1 \cdot \underline{k}_2^{T*} \rangle \\ \langle \underline{k}_2 \cdot \underline{k}_1^{T*} \rangle & \langle \underline{k}_2 \cdot \underline{k}_2^{T*} \rangle \end{bmatrix} = \begin{bmatrix} \langle [T_1] \rangle & \langle [\Omega_{12}] \rangle \\ \langle [\Omega_{12}]^{T*} \rangle & \langle [T_2] \rangle \end{bmatrix}$$

POLARIMETRIC INTERFEROMETRIC COHERENCY MATRIX (6x6)

 $\langle [T_6] \rangle$ **FOLLOWS A WISHART DISTRIBUTION** $P(\langle [T_6] \rangle / [\Sigma_m]) = \frac{|\langle [T_6] \rangle|^{L-p} exp(-tr([\Sigma_m]^{-1} \langle [T_6] \rangle))}{K(L,p) [\Sigma_m]^L} = W_C(L, [\Sigma_m])$ $\stackrel{\text{L: Number of Look}}{\underset{p: \text{ Polarimetric Dimension}}{\overset{p(p-1)}{L^{Lp}}} \Gamma(L)...\Gamma(L-p+1)$ She was $[\Sigma m]$: Cluster Center of the class m E. Pottier, L. Ferro-Famil (01/2005)

POLINSAR CLASSIFICATION PROCEDURE

CLASSIFICATION DETAILS: BUILDINGS AREAS

Optical Image

INSAR Image

POLSAR Image

VOL POLINSAR Segmentation

POLSAR Segmentation

POLINSAR Segmentation

Cesa POLinSAR Project

TRAUNSTEIN – ESAR – L-BAND

TRAUNSTEIN – GROUND TRUTH

 $2A_0 \qquad B_0 + B \qquad B_0 - B$

Mature broadleaves

Youth

Mature conifer

Growth broadleaves Growth

Growth conifer

Plenter (heterogeneous)

MS.

POLINSAR CLASSIFICATION PROCEDURE

INSA

Ground Truth

INSAR Image

POLSAR Image

VOL POLINSAR Segmentation

POLSAR Segmentation

POLINSAR Segmentation

Laurent Ferro-Famil – POLinSAR 05 / Tuesday - AM

DATA INVERSION - APPROACH

50

QUANTITATIVE ANALYSIS

PARAMETERS

Ð

DATA INVERSION

SNOW MONITORING – DRY SNOW MAPPING

SIR-C DATA - FRENCH ALPS - RISOUL -1994

LANDSAT OPTICAL IMAGE

© IETR E. Pottier, L. Ferro-Famil (01/2005)

PAULI – RGB IMAGE

SNOW MONITORING – DRY SNOW MAPPING

SIR-C DATA - FRENCH ALPS - RISOUL -1994

LANDSAT OPTICAL IMAGE

© IETR CANCE E. Pottier, L. Ferro-Famil (01/2005)

DRY SNOW MAPPING

Polarimetric Contrast Variation Enhancement (PVCE) over surfaces $\Delta \underline{\alpha}$ from summer to winter over forests

Audrey Martini – POLinSAR 05 / Wednesday - AM

LAND – AGRICULTURE APPLICATIONS

Soil Moisture & Biomass Estimation using Polarimetric Scattering Theory

- Oh
- Shi
- Dubois
- Francesco Mattia
- X-Bragg (I. Hajnsek 2000)
- E.R.D (S. Allain 2003)

LAND – AGRICULTURE APPLICATIONS

WEIHERBACHTAL DLR - ESAR L-band

Estimated Volumetric Moisture (mv/vol%)

LAND – AGRICULTURE APPLICATIONS E.R.D : Eigenvalue Relative Difference

ALLING Site DLR – ESAR L-band

0.5

QUANTITATIVE ANALYSIS

LAND – AGRICULTURE APPLICATIONS

ANISOTROPY

homogenous value less information *E. Pottier, L. Ferro-Famil (01/2005)* ERD

better discrimination

0

-1

0.5

0

-0.5

LAND – AGRICULTURE APPLICATIONS ANISOTROPY ERD

better field / surface separation

INSP

UNIVERSITE DE RENINES

LAND – AGRICULTURE APPLICATIONS

Retrieved dielectric constant

Good agreement between ground truth and estimated moisture

Sophie Allain – POLinSAR 05 / Wednesday - PM

ALLING - ESAR L-band

1 : Seedbed winter cereals

- 2 : Seedbed winter cereals (80%,15 cm)
- 3 : Harrowed
- 4 : Harrowed
- 5 : Pasture, grassland (95%,10 cm)
- 6 : Seedbed winter cereals (30%,4 cm)
- 7 : Seedbed
- 8 : Seedbed winter cereals (30%)
- 9 : Harrowed
- 10 : Pasture, grassland

May I invert ? Where can I invert ?

© IETR C. Pottier, L. Ferro-Famil (01/2005)

POLARIMETRIC REMOTE SENSING

Net i

INSA

L. Ferro-Famil, A. Reigber, E. Pottier, W.M. Boerner"Scene Characterization Using Subaperture Polarimetric SAR Data" IEEE Transactions on Geoscience and Remote Sensing, Vol 41, n° 10, October 2003.

RANGE - AZIMUTH ANALYSIS

UNIVERS

Gabor Transform

Range-Azimuth frequency domain

Azimuth

$$\omega_{az_0} = 2\omega_c \frac{V_{SAR}}{c} \sin \phi_0$$
 $d_{SAR}(\mathbf{I}, \omega_{az})$ \longrightarrow Anisotropic Scattering Behavior

Range

Ĩ

Pauli basis

$$\left|S_{HH}+S_{VV}\right|^2$$

$$\left|S_{HH}-S_{VV}\right|^2$$

$$2|S_{HV}|^2$$

ALLING Site DLR – ESAR L-band

Visualization of polarimetric variations

ALLING Site DLR – ESAR L-band

Visualization of polarimetric variations

© IETR E. Pottier, L. Ferro-Famil (01/2005)

IETR E. Pottier, L. Ferro-Famil (01/2005)

SUB-APERTURE ANALYSIS

RANGE - AZIMUTH ANALYSIS

Non-stationary media discrimination

UNVERSITE DE RENNES

POLINSAR - AZIMUTH ANALYSIS

Full resolution

Azimuth analysis

Interferences & residual motion compensation errors
Stronger perturbating effects in sub-spectra
E. Pottier, L. Ferro-Famil (01/2005)

DATA INVERSION - APPROACH

50

QUANTITATIVE ANALYSIS

PARAMETERS

