

ESA 2nd Advanced Training Course in Ocean Remote Sensing

Interpretation and Detection Capabilities in Support to Practical Analyses Tools

Johnny A. Johannessen (NERSC) and Fabrice Collard (CLS)

The surface roughness is the source the SAR backscatter signal.

The ocean surface roughness is influenced by wind and waves, currents, surface slicks and sea ice and is often different in open ocean versus coastal or ice covered regions due to fetch effects

Although the <u>SAR</u> "sees" only the "<u>Bragg waves</u>", these waves are modulated by a large number of upper ocean and atmospheric boundary layer phenomena. This is the reason why SAR images manifest expression of:

esa

SAR CONTRIBUTION TO MARINE MONITORING

Operational	Emerging	Routine Product	Research
Surveillance	New	and partly used	Dominated
	Application	in NWP	
Ship detection	Wind field	Ocean Waves	Surface current
Sinp detection	retrievals	and	fronts and
Oil snill		Ocean Spectra	eddies
detection		Ocean Speen a	cuties
detection			
			Internal waves
Sea Ice			
			Atmospheric
Shallow water			boundary layer
Bathymetry			Processes
			Film damping

Possible radar pulse returns from ships

Ship detection as a function of incidence angle (Vachon et al., 1997)

esa

SHIP DETECTION

→ ESA 2ND ADVANCED TRAINING ON OCEAN REMOTE SENSING

Ship Detection over Europe using Envisat ASAR Wide Swath products

🔺 46557 targets

Measuring ship speed using SARTool

SHIP DETECTIO

EMSA: CleanSeaNet - An oil spill detection service for European seas

OIL SPILL

esa

Showing compliance with IRTC (Internationally Recommended Transit Corridor)

Figure 1. Ocean and coastal areas under Norwegian jurisdiction: Norwegian economic zone, Jan Mayen, and the Svalbard fisheries protection zone. The gray zone is claimed by both Norway and Russia.

Figure 2. Radarsat-1 ScanSAR narrow-far image, 28 August 1996, showing foreign trawlers along the "Loop Hole" boundary. (© Canadian Space Agency.)

esa

PRESTIGE SPILL 17 NOVEMBER 2002

Urgently needed: Wind, Waves, Current, Air-Sea temp.diff

28 September - 2 October 2009 | NERSC | Bergen, Norway

50 km

© ESA 2002

esa

→ ESA 2ND ADVANCED TRAINING ON OCEAN REMOTE SENSING

OIL SPILL DETECTION

OIL SPILL DETECTION

esa

OIL SPILL DETECTION

Black tail – but not always a real pollution

Oil Spill, natural film, low wind speed

Natural film and eddy features

esa

→ ESA 2ND ADVANCED TRAINING ON OCEAN REMOTE SENSING

ARTIFIAL SLICK DAMPING VERSUS WAVELENGTH

Figure 22. SIR-C/X-SAR images of artificial oleyl alcohol slick during the expermant in German Bight. The images are for VV polarization, L-, C- and X-bands. The illustration taken from Gade et al. Imaging of ocean surface films by SIR-C/X-SAR. J.Geophys. Res. 103. C9. 1998.

After Gade et al, 1988

OIL SPILL DETECTION

esa

Typical shapes of oil spills originating from dumping of mineral oil from ships. (courtesy of CRISP, Singapore)

esa

→ ESA 2ND ADVANCED TRAINING ON OCEAN REMOTE SENSING

GMES Service Network

- Ground stations
- Service providers
- Service centre:
 - Order handling
 - support
 - Service interface

Oil Spill detection system

SAR CONTRIBUTION TO MARINE MONITORING

Operational Surveillance	Emerging New Application	Routine Product and partly used in NWP	Research Dominated
Ship detection Oil spill detection	Wind field retrievals	Ocean Waves and Ocean Spectra	Surface current fronts and eddies
Sea Ice Shallow water Bathymetry			Internal Waves Atmospheric boundary layer Processes
			Film damping

Arctic sea ice changes

esa

Arctic Ocean

Mosaic of RADARSAT ScanSAR imagery

COURTESY RON KWOK JPL

esa

Laul.

Surface and volume scattering

The importance of volume scattering is governed by the dielectric properties (dielectric constant) of the material: SAR $20^\circ \le \theta \le 26^\circ$ High DE: surface scattering dominates 1σ Low DE: volume scattering dominates MIZ Edge/ Range SAR Pancakes 10^{2} f(waves;floesize;temp) FYR SAR Pure Ice $= -10^{\circ}C$ 10

1998 Day of Year

Location of SHEBA, Nov 97

esa

esa

ASAR: Arctic Sea Ice Drift

esa

SAR CONTRIBUTION TO MARINE MONITORING

Operational Surveillance	Emerging New	Routine Product and partly used	Research Dominated
	Application		
Ship detection	Wind field retrievals	Ocean Waves and	Surface current fronts and
Oil spill detection		Ocean Spectra	eddies
See Lee			Internal Waves
Sea ice			Atmospheric
Shallow water Bathymetry			boundary layer Processes
			Film damping

Bathymetry by imaging radar.

Bathymetric features along the Chinese coast

ERS-1 SAR image of the Xinchuan Gang Shoals at the east coast of China north of Shanghai. Part of the area falls dry during ebb tide (dark areas off the coast).

esa

Bathymetric Assessment System

esa

COMPARISON SAR AND SOUNDING DEPTH DATA

esa

SAR CONTRIBUTION TO MARINE MONITORING

Operational Surveillance	Emerging New Application	Routine Product and partly used in NWP	Research Dominated
Ship detection Oil spill	Wind field retrievals	Ocean Waves and Ocean Spectra	Surface current fronts and eddies
Sea Ice			Internal Waves
Shallow water Bathymetry			Atmospheric boundary layer Processes
			Film damping

sa

ATMOSPHERIC BOUNDARY LAYER ROLLS

Courtesy Ralph Foster, Univ. Of Washington

Hurricane Eyes

Danielle 31 Aug '98	Dennis 27 Aug '99	Dennis 29 Aug '99	Dennis 31 Aug '99
Floyd 15 Sep '99	Alberto 17 Aug '00	Florence 13 Sep '00	Dalila 26 Jul '01
Flossie 29 Aug '01	Flossie 1 Sep '01	Erin 11 Sep '01	Erin 13 Sep '01
Felix 17 Sep '01	Humbert o 26 Sep '01	Juliette 27 Sep '01	Olga 28 Nov '01

100 km

esa

esa

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

esa

CROSS-SECTIONWIND SPEEDRANGE DOPPLERVELOCITY

sa

WI

esa

Envisat SAR Wind Image : Google Earth Format

Courtesy Monaldo et al

attillite.

WIN

sa

SURFACE EXPRESSION OF RAIN CELLS IN RADAR IMAGES

esa

esa

SAR CONTRIBUTION TO MARINE MONITORING

Operational	Emerging	Routine Product	Research
Surveillance	New	and partly used	Dominated
	Application	in NWP	
	Application		
Shin detection	Wind field	Deegn Wayor	Surface current
Sinp detection	vv mu netu	Ocean waves	Surface current
	retrievals	and	fronts and
Oil spill		Ocean Spectra	eddies
dotoction			
detection			
			Internal Waves
Sea Ice			
			Atmospharia
			Aunospheric
Shallow water			boundary layer
Bathymetry			Processes
			Film damping

SAR WAVE IMAGING MECHANISMS

- TILT MODULATIONS - HYDRODYNAMIC MODULATIONS - VELOCITY BUNCHING

Longer waves locally modify the exact plan of incidence to produce a contrast corresponding to the local change in cross section

 \rightarrow Tilt Modulation : a priori knowledge of the gradient of the relative cross section as a function of the small incidence angle deviation

$$T_t(k) = \left(\frac{1}{\sigma^o} \cdot \frac{\partial \sigma}{\partial \theta}\right)_{\theta = \theta_0} \cdot ik_r$$

→ Hydrodynamic Modulation : a priori knowledge of the gradient of the relative cross as a function of the phase of the long wave

$$T_{h}(k) = \left(\frac{1}{\sigma^{o}} \cdot \frac{\partial \sigma}{\partial \varphi}\right) \cdot ik_{r}$$

HYDRODYNAMIC MODULATION

esa

PARTICLE MOTION DUE TO TRAVELLING WAVES

esa

MOTION EFFECT - VELOCITY BUNCHING

Ocean waves from SAR

28 September - 2 October 2009 | NERSC | Bergen, Norway

esa

From Co- to Cross-Spectra Estimation: Ambiguity

esa

Inversion to SAR Ocean Wave Spectra

Courtesy NORUT

Validation - Performance

Time:01-APR-2006 08:43:57, Lat.= 23.38N, Lon.=-161.81E

Courtesy NORUT

Swell RMSe: $H_s \approx 0.4m$, $T \approx 0.7s$, $D \approx 23^\circ$

sa

Higher Order Products - Wave Rose

WVW SWH -- 20080901-20080931 -- Southern hemisph.

Courtesy NORUT

esa

Higer Order Products - Crossing Seas

CourtesyCLS-NORUT

FIREWORKS: Global NRT ASAR Swell Wave tracking is a reality:

Courtesy Collard, Chapron (ESA WVC study) http://soprano.cls.fr

SAR CONTRIBUTION TO MARINE MONITORING

Operational	Emerging	Routine Product	Research
Surveillance	New	and nartly used	Dominated
Surveniunce	Application		Dominuted
	Application		
Ship detection	wind field	Ocean waves	Surface current
	retrievals	and	fronts and
Oil spill		Ocean Spectra	oddios
On spin		Ocean Spectra	euules
detection			
			Internal Waves
C I			
Sea Ice			
			Atmospheric
Shallow water			houndary layon
Shahow water			Doundary layer
Bathymetry			Processes
			Film damping

CHALLENGE: FROM SAR IMAGE TO QUANTITATIVE CURRENT ESTIMATE

CHANGING THE ROUGHNESS BY CURRENTS

c Stal

28 September - 2 October 2009 | NERSC | Bergen, Norway

28 September - 2 October 2009 | NERSC | Bergen, Norway

SST & SURFACE CURRENT

SURFACE DIVERGENCE

ASAR IMAGE

SURFACE CURRENT & SST

esa

→ ESA 2ND ADVANCED TRAINING ON OCEAN REMOTE SENSING SRTM (X-SAR) Example: Wadden Sea (Netherlands)

Line-of-sight current from SRTM, (70 km)²

- Good qualitative and quantitative agreement
- Accuracy: About 0.1 m/s at 1 km resolution
- Data quality consistent with InSAR model

...and from circulation model KUSTWAD

Courtesy R.Romeiser

Estimation of Doppler anomaly

Anomaly (shift) = measured – predicted

$$\frac{\pi f_D}{k_R} = -\frac{(u \sin \theta - w \cos \theta)\sigma_0(\theta + \Delta \theta)}{\overline{\sigma_0(\theta + \Delta \theta)}} = V_D$$
f: Doppler shift

 K_{R} : Radar Wave number θ : Incidence angle U: horizontal velocity W: vertical velocity σ_{0} radar cross section

sa

esa

→ ESA 2ND ADVANCED TRAINING ON OCEAN REMOTE SENSING

Altimetry derived surface current : 7 days mean (13-20 September)

The greater Agulhas Current ō 32ª 13.09.07 4 atitude (S) 36ª ď 18º 20º 22° 24ª 26º 28° 30ª Longitude (E) Doppler derived radial surface velocity (m/s) 13-SEP-2007 20:54:26 0.0 1.5 2.0 2.5 -2,5 -2.0-1.5 -1.0-0.50.5 1.0

Range directed surface Doppler velocity after removal of wind contribution (13-20 September)

Range directed surface Doppler velocity after removal of wind contribution (13-20 September)

esa

10 UL

Kuroshio Monitoring

RANGE DOPPLER VELOCITY VERSUS SURFACE DRIFTERS

esa

NERSC

SST and range Doppler velocity overlay – 14 April 2009

Mean SST and range Doppler velocity

28 September - 2 October 2009 | NERSC | Bergen, Norway

NERSC

esa

→ ESA 2ND ADVANCED TRAINING ON OCEAN REMOTE SENSING

SAR CONTRIBUTION TO MARINE MONITORING

Operational Surveillance	Emerging New Application	Routine Product and partly used in NWP	Research Dominated
Ship detection	Wind field	Ocean Waves	SYNERGY
	retrievals	and	Surface current
Oil spill detection		Ocean Spectra	fronts and eddies
Sea Ice			Internal Waves
Shallow water Bathymetry			Atmospheric boundary layer Processes
			Film damning

esa

esa

LAUL

SAR CONTRIBUTION TO MARINE MONITORING

Operational	Emerging	Routine Product	Research
Surveillance	New	and partly used	Dominated
	Application	in NWP	
	Application		
Ship detection	Wind field	Ocean Waves	Surface current
			from to or d
	retrievals	and	Ironts and
Oil spill		Ocean Spectra	eddies
detection		-	
uctection			
			Internal Waves
Sea Ice			
			Atmosphoria
			Aunospheric
Shallow water			boundary layer
Bathymetry			Processes
			Film damping

NERSC

NERSC

Radar Imaging Model

IWs in the Straight of Gibraltar

Tropical and subtropical ocean viewed by ERS SAR (courtesy W. Alpers and ESA) http://earth.esa.int/ers/instruments/sar/applications/ERS-SARtropical/

28 September - 2 October 2009 | NERSC | Bergen, Norway

TYPICAL SAR SIGNATURE OF ATMOSPHERIC GRAVITY WAVES

TYPICAL SAR SIGNATURE OF OCEANIC INTERNAL WAVES

esa

28 September - 2 October 2009 | NERSC | Bergen, Norway

Internal waves from China Sea 3 August 2007

28 September - 2 October 2009 | NERSC | Bergen, Norway

esa

→ ESA 2ND ADVANCED TRAINING ON OCEAN REMOTE SENSING

Internal waves in the South China Sea from SAR images

After Xilin Gan

Schematic showing tidally generated solitons on shelf break

sa

28 September - 2 October 2009 | NERSC | Bergen, Norway

Characteristic summary of IW

Characteristic	Symbol	Scale
Packet Length	L (km)	1 – 10
Amplitude Factor	$2\eta_0(m)$	-15
Upper Layer Depth	$h_{1}(m)$	20 - 35
Lower Layer Depth	$h_2(m)$	30 - 200
Long Wave Speed	$c_0 (m s^{-1})$	0.5 - 1.0
Maximum Wavelength	$\lambda_{\text{MAX}}\left(m ight)$	100 - 1000
Crest Length	C _r (km)	0 - 30
Internal Tidal Wavelength	$D = VT (\mathbf{km})$	15 - 40
Characteristic Soliton Width	l_1 (m)	100

SAR CONTRIBUTION TO OCEAN RESEARCH & APPLICATION

Operational Services and NWP	Operational Surveillance	Emerging new applications	Research and Development
Ocean wave spectra	Sea Ice	High resolution coastal wind field	Surface Current fronts and eddies
Swell propagation and tracking	Oil Spill Ship Detection	Hurricane Wind Speed Intensities	Range Doppler Velocities
	Shallow Water		Internal Waves
	Bathymetry		ABL Processes
			Surfactants

esa

Wave spectra and swell propagation retrievals are robust without first guess input, but shorter waves and freak wave detection not generally possible. In use at NWPs and ECMWF

Oil spill and ship detection turned into operational services. But oil spill detection is based on statistical approach.

High resolution wind fields are retrieved, but repeat coverage too Infrequent to go into full operational NWP use

Surface current retrievals now emerging from range Doppler shift method and ATI

Consistent wind, wave and surface current retrievals not yet mature

Pure physical based scattering model still to be developed

