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Purpose of this document

The purpose of this ATBD is to give an outline of the GOMOS one-step retrieval algorithm.
In addition, this document discusses the differences between the one-step and the two-step
approaches, and the role of priors in the algorithm. This document is created in the framework
of the ALGOM (GOMOS Level 2 algorithm evolution studies) project funded by the European
Space Agency. This document will be distributed along with GOMOS One-step UTLS ozone
dataset.

Contents

1 Introduction to the GOMOS measurements 2

2 Operational two-step retrieval algorithm 3

3 One-step retrieval algorithm 4

4 Main differences between two-step and one-step approaches 5

5 Limitations of the Algorithm 6

1



1 Introduction to the GOMOS measurements

Global Ozone Monitoring by Occultation of Stars (GOMOS) is a satellite instrument onboard
ENVISAT spacecraft that was launched in March 2002. It was operative until the end of EN-
VISAT mission in 2012. During the mission, GOMOS observed about 880 000 vertical profiles
of ozone, NO2, NO3, aerosol extinctions and other species. About half of these measurements
were made during nighttime. In this section, we recall the GOMOS measurement principle and
the operative retrieval algorithm. For a more comprehensive introduction to GOMOS, see the
GOMOS Algorithm Theoretical Basis Document (ATBD)1 and ACP’s GOMOS special issue2

and the papers therein; in particular [1, 3, 4, 8].
The GOMOS measurement principle is relatively simple and it is based on the stellar-

occultation technique. The stellar spectrums at different tangent altitudes are obtained with
the sampling resolution of 0.3 − 1.7 km. One occultation contains roughly 100 measurement
spectrums at 1 416 different wavelengths in the UV–Visible wavelength region. Hence, roughly
150 000 individual measurements per occultation are obtained. To obtain the so-called trans-
mission spectrum, the stellar spectrum is divided by the reference spectrum that is measured
above the atmosphere. This can be written as

Tmeas
ext (λ, l) =

I(λ, l)

Iref(λ)
, (1)

where I(λ, l) is the stellar spectrum measured along the line-of-sight l and at wavelength λ.
Iref(λ) is the reference spectrum measured above the atmosphere. The error characteristics
of the measured transmission spectrum—used later to obtain the atmospheric profiles—vary
strongly from star to star with the stellar brightness and temperature. In the lower atmosphere,
in particular in the UTLS region, the signal-to-noise ratio is low due to increasing amount of
aerosols. See [8] for discussion and examples.

The transmission can be modeled using the Beer-Lambert law

Tmod
ext (λ, l) = exp(−τ(λ, l)) (2)

where the optical depth τ(λ, l) is given as

τ(λ, l) =
nconst∑
j=1

∫
l

αj(λ, T (s))ρj(s) ds, (3)

where ρj is a local density profile and αj(λ, T (s)) is the constituent, wavelength and tempera-
ture dependent cross-section. The integration is done along the line-of-sight. This model can
be reduced using the so-called effective cross-sections that are assumed to be constant along
the integration. This reduced model can be written as

τ(λ, l) =
nconst∑
j=1

αeff
j (λ)Nj(l), (4)

where Nj(l) =
∫
l
ρj(s) ds is the so-called line density of the constituent j and αeff

j (λ) is the
constituent and wavelength dependent effective cross-section. When the problem has been
discretized, we can use the geometry kernel matrix K to obtain the line densities Nj from the
actual local density profiles ρj. This can be written as

Nj = Kρj. (5)

1Available on the Internet at https://earth.esa.int/documents/10174/384988/GOMOS ATBD V3.pdf
2Available on the Internet at http://www.atmos-chem-phys.net/special issue153.html
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Using the vectorized notation, the full transmission model can be written as

Tmod
ext (ρ) = exp(−(K ⊗ A)ρ), (6)

where K⊗A is the Kronecker product between the kernel operator K and the cross-sections A.
If three gases (O3, NO2 and NO3), three aerosol parameters and 100 transmission spectrums at
1 500 wavelengths are considered, the sizes of the elements of the model (6) are the following.
The length of the transmission model output Tmod

ext is 1 500 × 100 = 150 000 and the length of
the input ρ is 6 × 100 = 600. Hence, the linear operator K ⊗ A has to be a 150 000 × 600
matrix. Here the altitudes of the transmission model input and output are assumed to be the
same. In addition to O3, NO2, NO3 and aerosol parameters, neutral density and some minor
trace gases like OClO and BrO can be included in the model, too.

The aim of the GOMOS retrieval algorithms is to find the atmospheric profiles ρj that
model the measured transmission in statistical sense given the measurement error and some a
priori knowledge. Next, we present an outline of the operational two-step approach.

2 Operational two-step retrieval algorithm

The operational GOMOS retrieval algorithm is based on a two-step approach, where the spec-
tral and the vertical inversion are conducted separately. This procedure can be iterated for
improving accuracy. The use of the reduced model with the effective cross-sections enables the
splitting.

In the spectral inversion, the line densities N are obtained by minimizing the following cost
function

J(N) =
1

2
(Tmod

ext (N) − Tmeas
ext )TC−1(Tmod

ext (N) − Tmeas
ext ). (7)

using the Levenberg-Marquardt (LM) optimizing algorithm. The covariance matrix C includes
the measurement noise and possible modeling uncertainties. Note that this part of the retrieval
uses uninformative flat prior and only the likelihood part of the Bayesian cost function is
considered.

When the spectral inversion part has been done and the different line densities Nj obtained,
the vertical inversion can be started. In the vertical inversion, the aim is to find the vertical
profiles ρj given the line densities Nj separately for every constituent. In principle, this could
be done solving the linear Eq. (5). However, because of the low signal-to-noise ratio and
other factors, the solution is based on Tikhonov regularization. Using the matrix calculus, the
solution can be written as

ργ,j = (KTK + γLTL)−1KTNj, (8)

where γ is the Tikhonov regularization parameter. In the retrieval, the smoothness require-
ments are considered. Hence, L is selected to be the tridiagonal matrix that approximate the
second derivative. It can be written as

L =
1

h2



0 0 0 0 · · · 0
1 −2 1 0 · · · 0

0 1 −2 1
. . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 1 −2 1
0 · · · 0 0 0 0


, (9)

where h is the layer thickness (in practice different for every layer). In the operative algorithm,
the regularization parameter γ has been selected so that the so-called target resolution—defined
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as a spread of the averaging kernel computed using (5) and (8), see, e.g., [6] for details—for
ozone is 2 km below 30 km and 3 km above 40 km. For NO2, NO3 and aerosol parameters the
selected target resolution is 4 km at all altitudes.

Two features about the algorithm can be noted. First, the (smoothness) priors have only
effect in the vertical inversion part and are given for each constituent separately. This means
that the prior given, e.g., to aerosol profiles does not affect the retrievals of other species.
Second, the averaging kernel of the Tikhonov solution (8) does not depend of the measurement
noise, and it depends of the actual measurements only via the kernel matrix K. This allows
the setting of the target resolution, since the measurement geometry is relatively similar from
one occultation to another and the layer thickness is included in (9).

3 One-step retrieval algorithm

The basic idea of the GOMOS one-step retrieval algorithm is to conduct the spectral and the
vertical inversion of the operative GOMOS algorithm simultaneously using the full model (6).
From the methodological point of view this makes sense, since the assumption of the effective
cross-sections, see formula (4), can be dropped. In addition, the splitting of the inversion in
two parts is somewhat artificial. Historically, the use of the two-step strategy in the operative
algorithm is mainly related to the enormous size of the problem. The possibility of the one-
step inversion was studied already in the early days of the GOMOS mission [9, 2]. Here we
present our own version of the GOMOS one-step retrieval algorithm. The algorithm is written
in MATLAB programing language.

The one-step retrieval of the GOMOS measurements can be seen as a minimization of the
following cost function consisting of the likelihood and the prior:

J(ρ) =
1

2
(Tmod

ext (ρ) − Tmeas
ext )TC−1(Tmod

ext (ρ) + Tmeas
ext ) +

1

2
(ρprior −Hρ)C−1

prior(ρprior −Hρ), (10)

where H is a linear operator based on how the prior given. If, e.g., the smoothness prior is
considered, the matrix H is selected like the matrix L in (9) and ρprior is set to zero. This
cost function could, in principle, be minimized using the non-linear optimizing algorithms like
the LM algorithm used in the spectral inversion part of the operative algorithm. However,
in practice, we solve this problem using generalized linear model (GLIM) approach with the
iterative re-weighted least squares algorithm (IRLS), where the special exponential structure
of the problem can be exploited for numerical efficiency [5]. The IRLS algorithm is a special
case of a more general approach to optimization called the Newton-Raphson algorithm.

Let us next show how the GLIM approach works in practice. Let us consider the following
model

y = exp(Ax) + ε, (11)

where y are the measurements, A is the linear operator, ε ∼ N(0, σI) is the measurement noise
and x is the unknown state vector. Readers familiar with the GLIM vocabulary, can note that
the link function between the measurements and the linear operator is logarithmic and—as the
measurement error is assumed Gaussian—the variance function is simply identity.

Using the IRLS algorithm, starting form the initial guess of x, the unknown x can be solved
iteratively. In the iteration steps, the auxiliary problem based on the linear equation

z = Ax, (12)
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is solved using the standard-deviation weights w, where

η = Ax, (13)

µ = exp(η), (14)

z = η + (y − µ)/µ, (15)

w = σ/µ. (16)

For more information, see [5] for details. The linear step is operating on the original unknowns
x and if we assign prior regularization to each step then the final solution uses the same prior
constraints.

When prior information xprior is considered, the iterative solution x can be seen as the
argument that minimizes the following quadratic cost function

J(x) =
1

2
(Ax− z)TC−1

w (Ax− z) +
1

2
(xprior −Hx)TC−1

prior(xprior −Hx), (17)

where Cw is the diagonal covariance matrix induced by the weights w. As the operators A and
H in the cost function (17) are linear, we can obtain the solution x using basic linear algebra

x = (ATC−1
w A+HTC−1

priorH)−1(ATC−1
w z +HTC−1

priorxprior). (18)

In practice, we solve this linear equation using Cholesky factorization of (ATC−1
w A+HTC−1

priorH)
and MATLAB’s backslash3 operator, although other options exist too. We note that in full
case, the presented GLIM approach is computationally much lighter than the computationally
rather expensive LM algorithm.

Prior information. In the one-step algorithm, there are currently three ways of giving the
prior information: one can give the prior in absolute units or give the prior for the first or the
second derivative of the profiles. Naturally, all three types of priors can be considered at the
same time. The non-trivial part in the one-step algorithm is the selection of the (diagonal) prior
covariance matrix Cprior for the derivatives. From the statistical point of view, the covariance
matrix should reflect our prior knowledge, e.g., from the theory, about how smooth the profiles
are or how big steps can the profiles make between the altitudes. See [2, 7] for details. From
the practical point of view, the prior covariance matrix can be seen as a similar regularization
tuning handle of the inversion as the Tikhonov regularization parameter γ is in the operative
algorithm.

4 Main differences between two-step and one-step ap-

proaches

Although the operative two-step and the presented one-step algorithms consist of exactly the
same elements, they are still fundamentally different. In one-step algorithm some of the ap-
proximation can be avoided and the prior and the measurement errors are correctly treated
together. Some of the algorithmic differences are discussed next.

The main difference of the retrieval algorithms comes from the use of the prior information.
In the one-step algorithm, the prior given to one constituent affects the other constituent too.
This can be clearly seen from the formulation of the cost function (10). The opposite is true
for the operative algorithm, where the prior takes place only in the vertical inversion and is
given for every constituent separately.

3See http://www.mathworks.se/help/matlab/ref/mldivide.html
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On the other hand, the resolution of the operative algorithm depends very little of the actual
occultations. In particular, it is independent of the measurement noise that varies strongly from
one star type to another. This allows the setting of the so-called target resolution, which makes
the operative dataset user-friendly and easy to use in, e.g., time-series analysis and validation
studies [4].

In the one-step algorithm, similar target resolution cannot be set, since the resolution
depends on the occultation depended measurement noise. In particular, the target resolution
cannot be set, if the prior covariance matrix is kept fixed for all star types.

5 Limitations of the Algorithm

Although the one-step retrieval algorithm has proven its usefulness in various case studies and
in creation of the full ALGOM dataset, it is good to list some limitations of the algorithm: 1)
Like the operational two-step algorithm, it is very sensitive to the aerosols; 2) Target resolution
cannot be set; 3) Application of the so-called full-covariance matrix is challenging (i.e., too time
consuming when creating full dataset); 4) Error-bars are expected to be too small; 5) Current
best setup for ozone does not allow good reliable retrievals for NO2 and NO3.
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