Refinement of the Stochastic Model of GOCE Scientific Data and its Effect on the in-situ Gravity Field Solution

W.D. Schuh, J.M. Brockmann, B. Kargoll and I. Krasbutter
Institute of Geodesy and Geoinformation
University of Bonn

R. Pail
Institute of Astronomical and Physical Geodesy
TU Munich
pcgma Team — former and present

- Thomas Auzinger
- Gernot Plank
- Christian Boxhammer
- Boris Kargoll
- Hamza Alkhatib
- Jeff Ries
- Christian Siemes
- Jan Martin Brockmann
- Ina Krasbutter
- Lutz Roese-Koerner
pcgma-Team — former and present

Thomas Auzinger
Gernot Plank
Christian Boxhammer
Boris Kargoll
Hamza Alkhatib
Jeff Ries
Christian Siemes
Jan Martin Brockmann
Ina Krasbutter
Lutz Roese-Koerner

Helmut Goiginger (TUG)
Reinhard Mayrhofer (TUG)
Eduard Höck (AAS)
Thomas Fecher (IAPG)
Roland Pail (IAPG)
Pail et al. (2010): GOCE gravity field model derived from Orbit and Gradiometry data applying the time-wise method. (Session 2.3.3)
Motivation - SGG-only solution

Principles:

- Extract as much signal from the gravity gradiometer as possible
- Solve for gradiometer only solution (SGG-only) to get unbiased estimators for the characteristics of the gradiometer measurements
- Find an appropriate stochastic model to describe the behavior of the gradiometer

Target: a consistent model !!!

agreement between internal and external error estimates

© ESA
Motivation - GOCE-only solution

Principles:
- tuning a final combined GOCE gravity field solution without using prior gravity fields
 \[\Rightarrow\text{purity requirements:}\]
 - gradiometry (GOCE)
 - kinematic orbits (GOCE GPS only)
 - smoothness conditions
 (polar gap, high degrees)

 \[\Rightarrow\text{GOCE only model}\]

Target: a consistent GOCE-only model with optimal data exploitation
(coefficients, variance/covariance matrix, normal equations)
Contents

Motivation
Signals
Filters
Models
Résumé
Motivation

Signals
- signal
- psd V_{zz}
- psd residuals
- GOCE residuals

Filters

Models

Résumé

Signals
Motivation
Signals
signal psd V_{zz} psd residuals GOCE residuals
Filters
Models
Résumé

GOCE - EGG-NOM_2 V_{zz} signal

![Graph showing V_{zz} signal with model and measurements compared to residuals.](image)

- V_{zz} model
- V_{zz} measurements
- residuals

GOCE - V_{zz} power spectrum density

Motivation

- GOCE signal
- GOCE residuals

Signals

- V_{zz} psd
- psd residuals
- GOCE residuals

Filters

Models

Résumé

- model
- measurements
- residuals

![Graph](image-url)
Motivation

Signals
signal
psd V_{zz}
psd residuals
GOCE residuals

Filters

Models

Résumé

GOCE - power spectrum density

Motivation

Signals
signal
psd V_{zz}
psd residuals
GOCE residuals

Filters

Models

Résumé
Correlated measurements:
- white noise in the measurement bandwidth (0.005 Hz - 0.1 Hz)
- $1/f$ characteristic with individual peaks outside the bandwidth

Problems with GOCE data:
- number of measurements (100.000.000)
- long correlation length (1/rev)
Correlated measurements:
- white noise in the measurement bandwidth (0.005 Hz - 0.1 Hz)
- $1/f$ characteristic with individual peaks outside the bandwidth

Problems with GOCE data:
- number of measurements (100,000,000)
- long correlation length (1/rev)

Parametrization strategies:
- deterministic approaches
 - nuisance variables (empirical parameters, stochastic impulses)
 - short arc approach
- stochastic approaches
 - covariance functions
 - decorrelation by filtering
GOCE signal - colored noise

Correlated measurements:
- white noise in the measurement bandwidth (0.005 Hz - 0.1 Hz)
- $1/f$ characteristic with individual peaks outside the bandwidth

Problems with GOCE data:
- number of measurements (100,000,000)
- long correlation length (1/rev)

Parametrization strategies:
- deterministic approaches
 - nuisance variables (empirical parameters, stochastic impulses)
 - short arc approach
- stochastic approaches
 - covariance functions
 - decorrelation by filtering

Strategy: tailored approach
- time-wise approach
- in-situ measurements
- massive parallel computation
- discrete digital filters
- adaptive filter characteristic
Filters

decorrelation
assortment
filtered residuals
differences
variances
filter 9024
filter 9025
Résumé

Models

Résumé
Decorrelation

Motivation
Signals
Filters
decorrelation
assortment
filtered residuals
differences
variances
filter 9024
filter 9025
Résumé
Models
Résumé

input: \(\ell, \Sigma \)

model: \[Ax = \ell + v \]

principle: \[v^T \Sigma^{-1} v \]

\[\Sigma = R^T R \]

\[\bar{\ell} = F \ell, \quad \bar{\Sigma} = I \]
\[\bar{A} x = \bar{\ell} + \bar{v} \]
\[\bar{v}^T \bar{v} \]

\[(R^{-1})^T = F \]

\[\bar{\ell} = (R^{-1})^T \ell \]
\[\bar{A} = (R^{-1})^T A \]
\[\bar{\Sigma} = (R^{-1})^T \Sigma R^{-1} = I \]
Filter assortment

square root of power spectral density Z_Z

residuals $[\text{mE/}\text{sqrt}(\text{Hz})]$

- **1000**: difference filter
- **9295**: bandpass filter
- **9024**: cascaded ARMA filter
- **9025**: cascaded notch-ARMA filter
Filtered residuals

9295:

1000:

9024:

9025:
Differences of coefficients (ref: ITG grace 2010s)

9295:

1000:

9024:

9025:
Standard deviation of the coefficients

9295:

9000:

9024:

9025:
Filter 9024: cascaded ARMA filter

- 2 cascades: warmup=1500 [sec]
- MA(2) ... difference filter
- ARMA(50,50) ... LS process estimation
- Low computational effort
- Low degree strips are not modeled in the covariances
- Efficient near the bandwidth

Filtered residuals

Square root of power spectral density Z

Residuals

Filtered residuals

Low computational effort

Low degree strips are not modeled in the covariances

Efficient near the bandwidth
Filter 9025: cascaded NOTCH-ARMA filter

26 cascades: warmup=200,000 [sec]
- MA(2) ... difference filter
- 24 * ARMA(2,2) ... notch filters
- ARMA(50,50) ...
 LS process estimation

- hugh computational effort
- low degree strips are modeled
Résumé - Filter

- filters are capable of decorrelating colored noise
- filters overcome noise/signal ratios up to 6 orders of magnitude
- filters can span a frequency selective metric
- filters work data adaptive
- filters are extreme flexible
- filters are easy to implement
- filters allow for a sequential approach
- filters are able to handle huge data sets
- filters are predisposed for parallel implementation
Models
Combination: SST + SGG

Degree variances (without near zonals): deviations from EIGEN-5C

SST: 2-20 transition zone: 20-55 SGG: 55-205
Time-wise gravity field model - final configuration

<table>
<thead>
<tr>
<th>parameter</th>
<th>test configurations / data period: 31.10.2009 - 7.1.2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter</td>
<td>1000 9295 9036 9024 9025</td>
</tr>
<tr>
<td></td>
<td>some more during tuning of 9024 and 9025</td>
</tr>
<tr>
<td></td>
<td>Simple approximation, avoid long warmup</td>
</tr>
<tr>
<td>SST</td>
<td>PKI PKI + PCV</td>
</tr>
<tr>
<td></td>
<td>some more SST configurations</td>
</tr>
<tr>
<td></td>
<td>GOCE only model to avoid bias against a priori field (e.g. GRACE)</td>
</tr>
<tr>
<td>weighting</td>
<td>VCE</td>
</tr>
<tr>
<td></td>
<td>iterative weights determined by VCE</td>
</tr>
<tr>
<td>regularization polar gap</td>
<td>Kaula spherical caps</td>
</tr>
<tr>
<td></td>
<td>better cut of behavior, no global smoothing</td>
</tr>
<tr>
<td>Kaula regularization high degrees</td>
<td>150 170 200 none</td>
</tr>
<tr>
<td></td>
<td>stabilization of high degrees, no degradation of well determined parameters</td>
</tr>
</tbody>
</table>
GOCE TIme-wise Model vs. ITGgrace2010s

ITGgrace2010s
- signal ITGgrace2010s
- variances ITGgrace2010s

GOCE TIme-wise Model
- deviations from ITGgrace2010s
- variances GOCE TIM

Degree variance vs. sh degree graph.
GOCE TI\text{me-wise} Model vs. ITGgrace2010s

20 - 120 : good agreement between deviations of the coefficients and the variances of GOCE TIM \implies \text{GOCE TIM is consistent}
GOCE Ti\textit{me-wise} Model vs. ITGgrace2010s

20 - 120: good agreement between deviations of the coefficients and the variances of GOCE TIM \[\longrightarrow \text{GOCE TIM is consistent} \]

150 - 180: good agreement between deviations of the coefficients and the variances of ITGgrace2010s \[\longrightarrow \text{GOCE TIM is superior} \]
GOCE TI \textit{me-wise Model} vs. ITGgrace2010s

\begin{itemize}
 \item 20 - 120 : good agreement between deviations of the coefficients and the variances of GOCE TIM \quad \Rightarrow \text{GOCE TIM is consistent}
 \item 150 - 180 : good agreement between deviations of the coefficients and the variances of ITGgrace2010s \quad \Rightarrow \text{GOCE TIM is superior}
 \item 120 - 150 : transition zone \quad \Rightarrow \text{benefits from GOCE TIM}
\end{itemize}
GOCE TIme-wise Model vs. ITGgrace2010s

20 - 120: good agreement between deviations of the coefficients and the variances of GOCE TIM \implies ITGgrace2010s is superior

150 - 180: good agreement between deviations of the coefficients and the variances of ITGgrace2010s \implies ITGgrace2010s is consistent

120 - 150: transition zone
GOCE TIMe-wise Model vs. EIGEN05c

EIGEN05c

- - - signal ITGgrace2010s
- - - variances ITGgrace2010s

GOCE TIMe-wise Model

- - - deviations from EIGEN05c
- - - variances GOCE TIM

EIGEN05c

10^0 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^0

0 50 100 150 200

degree variance vs. sh degree
20 - 80 : good agreement between deviations of the coefficients and the variances of GOCE TIM

⇒ GOCE TIM is consistent
GOCE TI\textit{me-wise Model} vs. EIGEN05c

20 - 80: good agreement between deviations of the coefficients and the variances of GOCE TIM

\[\Rightarrow \text{GOCE TIM is consistent} \]

80 - 100: agreement between deviations of the coefficients and the variances of EIGEN5c

\[\Rightarrow \text{GOCE TIM is superior} \]
GOCE Time-wise Model vs. EIGEN05c

- 20 - 80: good agreement between deviations of the coefficients and the variances of GOCE TIM => GOCE TIM is consistent
- 80 - 100: agreement between deviations of the coefficients and the variances of EIGEN5c => GOCE TIM is superior
- 100 - 220: ???
GOCE Time-wise Model vs. EIGEN05c

EIGEN05c

- - - - signal ITGgrace2010s

- - - - variances ITGgrace2010s

GOCE Time-wise Model

- - - - deviations from EIGEN05c

- - - - variances GOCE TIM

20 - 80: good agreement between deviations of the coefficients and the variances of GOCE TIM

⇒ GOCE TIM is consistent

80 - 100: agreement between deviations of the coefficients and the variances of EIGEN05c

⇒ GOCE TIM is superior

100 - 220: ???

⇒ let’s have a look to the spatial domain
deviations of gravity gradients in satellite attitude

ascending $V_{xx}^{GOCE} - V_{xx}^{EIGEN}$ range: [-5 5] mE

<table>
<thead>
<tr>
<th>Statistics:</th>
<th>xx [mE]</th>
<th>yy [mE]</th>
<th>zz [mE]</th>
</tr>
</thead>
<tbody>
<tr>
<td>global</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>max</td>
<td>37</td>
<td>37</td>
<td>64</td>
</tr>
<tr>
<td>rms</td>
<td>1.7</td>
<td>1.9</td>
<td>3.0</td>
</tr>
<tr>
<td>Ocean (Atlantic, Pacific)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>max</td>
<td>3.3</td>
<td>3.6</td>
<td>5.7</td>
</tr>
<tr>
<td>rms</td>
<td>0.6</td>
<td>0.9</td>
<td>1.3</td>
</tr>
<tr>
<td>Australian Ocean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>max</td>
<td>2.9</td>
<td>9.2</td>
<td>12</td>
</tr>
<tr>
<td>rms</td>
<td>0.7</td>
<td>2.2</td>
<td>2.5</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>max</td>
<td>4.4</td>
<td>2.7</td>
<td>6.9</td>
</tr>
<tr>
<td>rms</td>
<td>1.5</td>
<td>1.1</td>
<td>2.0</td>
</tr>
</tbody>
</table>
deviations of gravity gradients in satellite attitude

ascending $V_{xx_{GOCE}} - V_{xx_{EIGN}}$ range: [-5 5] mE

<table>
<thead>
<tr>
<th></th>
<th>xx [mE]</th>
<th>yy [mE]</th>
<th>zz [mE]</th>
</tr>
</thead>
<tbody>
<tr>
<td>global</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>max</td>
<td>37</td>
<td>37</td>
<td>64</td>
</tr>
<tr>
<td>rms</td>
<td>1.7</td>
<td>1.9</td>
<td>3.0</td>
</tr>
<tr>
<td>Ocean (Atlantic, Pacific)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>max</td>
<td>3.3</td>
<td>3.6</td>
<td>5.7</td>
</tr>
<tr>
<td>rms</td>
<td>0.6</td>
<td>0.9</td>
<td>1.3</td>
</tr>
<tr>
<td>Australian Ocean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>max</td>
<td>2.9</td>
<td>9.2</td>
<td>12</td>
</tr>
<tr>
<td>rms</td>
<td>0.7</td>
<td>2.2</td>
<td>2.5</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>max</td>
<td>4.4</td>
<td>2.7</td>
<td>6.9</td>
</tr>
<tr>
<td>rms</td>
<td>1.5</td>
<td>1.1</td>
<td>2.0</td>
</tr>
</tbody>
</table>

⇒ accuracy GOCE TIM:
ocean: 0.6 - 1.3 [mE]
land: ???
Résumé
Motivation
Signals
Filters
Models
Résumé

Gradiometry (SGG-part)
- in-situ processing of gravity gradients
- decorrelation with data-adaptive digital filters
- maximal exploitation of the signal
Gradiometry (SGG-part)
- in-situ processing of gravity gradients
- decorrelation with data-adaptive digital filters
- maximal exploitation of the signal

high-low satellite tracking (SST-part)
- kinematic orbits
Résumé - GOCE TI\textsubscript{me-wise} Model

Motivation

Signals

Filters

Models

Résumé

Gradiometry (SGG-part)
- in-situ processing of gravity gradients
- decorrelation with data-adaptive digital filters
- maximal exploitation of the signal

high-low satellite tracking (SST-part)
- kinematic orbits

smoothness conditions
- polar gaps
- high degrees (>170)
Résumé - GOCE TI\textit{me-wise} M\textit{odel}

- **Gradiometry (SGG-part)**
 - in-situ processing of gravity gradients
 - decorrelation with data-adaptive digital filters
 - maximal exploitation of the signal

- **high-low satellite tracking (SST-part)**
 - kinematic orbits

- **smoothness conditions**
 - polar gaps
 - high degrees (>170)

GOCE TI\textit{me-wise} M\textit{odel} is a **consistent GOCE-only model** with maximal data exploitation (coefficients, variance/covariance matrix)