
Basic Radar Altimetry Toolbox v1.0

User Manual

July 2006

Basic Radar Altimetry Toolbox User Manual

Contents
1. Introduction... 1
2. Data read and processed.. 2
3. How to install BRAT.. 4

3.1. Windows© binaries... 4
3.2. Linux binaries.. 4
3.3. From source.. 4

4. How to uninstall BRAT.. 5
4.1. Windows© binaries... 5
4.2. Linux binaries.. 5
4.3. From source.. 5

5. BRAT Graphical User Interface (GUI).. 6
5.1. Overview.. 6
5.2. Starting with BRATGUI... 6

5.2.1.Create a Workspace.. 6
5.2.2.Create a dataset... 7
5.2.3.Create an operation... 9
5.2.4.Create a view... 25

6. Visualisation interface.. 30
6.1. ‘Y=F(X)’.. 30
6.2. ‘Z=F(lon, lat)’.. 32

6.2.1.Display properties.. 33
6.2.2.Color table editor... 35
6.2.3.Contour table editor.. 38

7. Using BRAT in ‘command lines’ mode with parameter files... 40
7.1. Creating an output NetCDF file.. 40
7.2. Visualising an output NetCDF file through BRAT.. 41
7.3. Using the parameter files to process many datasets... 42

8. BRATHL Application Programming Interfaces (APIs).. 45
8.1. Data reading function... 45
8.2. Cycle/date conversion functions... 45
8.3. Date conversion/computation functions... 46
8.4. Named structures... 47

Annex A. List of datasets read by BRAT... 49
Annex B.Y=F(X) parameter file keys.. 53
Annex C.Z=F(X,Y) parameter file keys... 55
Annex D.Display parameter file keys... 58
Annex E.BRATHL-IDL API.. 62
Annex F.BRATHL-MATLAB API... 75
Annex G.BRATHL-Fortran API... 87
Annex H.BRATHL-C API... 92

Basic Radar Altimetry Toolbox User Manual

1. Introduction

The Basic Radar Altimetry Toolbox is a collection of tools and tutorial documents designed to facilitate
the use of radar altimetry data. The toolbox is able to read most distributed radar altimetry data, from
ERS-1 & 2 (ESA), Topex/Poseidon (NASA/CNES), Geosat Follow-On (US Navy), Jason-1
(CNES/NASA), Envisat (ESA) and the future Cryosat (ESA) missions, to process and edit it to some
extent and to generate statistics and visualise the results.

The BRAT package contains a set of libraries, command line tools and application program interfaces
(APIs), along with a Graphical User Interface.

Its main functions are:
• Data Import and Quick Look: basic tools for extracting data from standard formats and

generating quick-look images.
• Data Export: output of data to NetCDF (ASCII dump provided). Raster images (png, jpeg, bmp,

tiff, pnm) can be saved.
• Statistics: calculation of statistical parameters from data.
• Combinations: computation of combinations of data fields (and saving of those formulas)
• Resampling: over and under sampling of data; data binning.
• Data editing: data selection using simple criteria, or a combination of criteria (that can also be

saved)
• Exchanges: data editing and combinations can be exchanged between users
• Data visualisation: Display of results, with user-defined preferences. The viewer enables the

user to display data stored in the internal format (NetCDF).

The Toolbox is designed with a graphical user interface that enables the operator to easily specify the
processing parameters required by each tool. Those parameters can also be defined directly in
parameter files. APIs are available with data reading, date and cycle/pass conversion and statistical
computation functions for C, IDL and Matlab. For beginners, we recommend using the GUI.

BRAT is provided as open source software, enabling the user community to participate in further
development and quality improvement.

Basic Radar Altimetry Toolbox User Manual

2. Data read and processed
The Basic Radar Altimetry Toolbox is able to read most distributed radar altimetry data, from ERS-1 & 2
(ESA), Topex/Poseidon (NASA/CNES), Geosat Follow-On (US Navy), Jason-1 (CNES/NASA), Envisat
(ESA) and the future Cryosat (ESA) missions. The different types of data readable and processed by the
Basic Radar Altimetry Toolbox are listed below (for a description of the exact datasets with their
nomenclature, see Annex A). Note that data stored in arrays (e.g. waveforms) are not available
individually (i.e. you can't access one value in the array) through the Graphical User Interface, but “only”
through the API (8.BRATHL Application Programming Interfaces (APIs)), except for high-resolution GDR
data (10, 18 and 20-Hz data) that you can access individually via the GUI.

Level 1B/2 data products

Data satellite(s) Data center format
Level 1B & level 2* Cryosat* ESA ESA PDS
RA-2 wind/wave product for Meteo Users
(RA2_WWV_2P)

Envisat ESA ESA PDS

RA-2 Fast Delivery Geophysical Data Record
(RA2_FGD_2P)

Envisat ESA ESA PDS

RA-2 Geophysical Data Record (RA2_GDR_2P) Envisat ESA ESA PDS
RA-2 Intermediate Geophysical Data Record
(RA2_IGD_2P)

Envisat ESA ESA PDS

RA-2 Sensor Data Record (RA2_MWS_2P) Envisat ESA ESA PDS
Interim Geophysical data record (IGDR) Jason-1,

Topex/Poseidon
AVISO
PO.DAAC

binary

Geophysical data record (GDR) Jason-1,
Topex/Poseidon

AVISO
PO.DAAC

binary

Operational Sensor Data Record (OSDR) Jason-1 AVISO
PO.DAAC

binary

Sensor Geophysical data record (SGDR) Jason-1 AVISO
PO.DAAC

binary

RA OPR ERS-1 and 2 CERSAT ESA PDS
Geophysical data record (GDR) GFO NOAA binary

Higher-level products

Data satellite(s) Data center format
Along-track Delayed-Time and Near Real Time Sea
Level Anomalies (DT- & NRT-SLA) (Ssalto/Duacs
multimission products)

Cryosat*, Jason-1,
Topex/Poseidon,
GFO, Envisat, ERS-
2, ERS-1

AVISO NetCDF

Along-track Delayed-Time and Near Real Time
Absolute Dynamic Topography (DT- & NRT-ADT)
(Ssalto/Duacs multimission products)

Cryosat*, Jason-1,
Topex/Poseidon,
GFO, Envisat, ERS-
2, ERS-1

AVISO NetCDF

Gridded Delayed-Time and Near Real Time Maps of
Sea Level Anomalies (DT- & NRT-MSLA)
(Ssalto/Duacs multimission products)

Cryosat*, Jason-1,
Topex/Poseidon,
GFO, Envisat, ERS-
1 & -2, merged

AVISO NetCDF

* Data to be published in the future

Basic Radar Altimetry Toolbox User Manual

Gridded Delayed-Time and Near Real Time Maps of
Sea Level Anomalies mapping error (DT- & NRT-
MSLA) (Ssalto/Duacs multimission products)

Cryosat*, Jason-1,
Topex/Poseidon,
GFO, Envisat, ERS-
2, ERS-1, merged

AVISO NetCDF

Gridded Delayed-Time and Near Real Time Maps of
Sea Level Anomalies geostrophic velocities (DT- &
NRT-MSLA) (Ssalto/Duacs multimission products)

Cryosat*, Jason-1,
Topex/Poseidon,
GFO, Envisat, ERS-
2, ERS-1, merged

AVISO NetCDF

Gridded Delayed-Time and Near Real TimeMaps of
Absolute Dynamic Topography (DT- & NRT-MADT)
(Ssalto/Duacs multimission products)

merged AVISO NetCDF

Delayed-Time and Near Real Time Absolute
Dynamic Topography geostrophic velocities (DT- &
NRT-MADT) (Ssalto/Duacs multimission products)

merged AVISO NetCDF

Along-track Delayed-Time Sea Level Anomalies
(DT-SLA) (monomission product)

Cryosat*, Jason-1,
Topex/Poseidon,
Envisat, ERS-2

AVISO NetCDF

Along-track Delayed-Time Corrected Sea Surface
Height (DT-CorSSH) (monomission product)

Cryosat*, Jason-1,
Topex/Poseidon,
Envisat, ERS-2

AVISO NetCDF

Along-track Sea Surface Height Anomalies (AT-
SSHA)

Topex/Poseidon,
Jason-1

PO.DAAC binary

Along-track Gridded Sea Surface Height Anomalies
(ATG-SSHA)

Topex/Poseidon,
Jason-1

PO.DAAC binary

Gridded Near Real Time Maps of Significant Wave
Height (NRT-MSWH) (mono- and multi-mission
products)

Jason-1,
Topex/Poseidon,
Envisat, GFO,
merged

AVISO NetCDF

Gridded Near Real Time Maps of Wind Speed
modulus (NRT-MWind)

Jason-1,
Topex/Poseidon,
Envisat, GFO,
merged

AVISO NetCDF

Heracles along-track land-ice (multimission products)* Cryosat*, Envisat ESA NetCDF
Heracles crossover land-ice (multimission products)* Cryosat*, Envisat ESA NetCDF
Gridded Heracles SHA land-ice (multimission
products)*

Cryosat*, Envisat,
merged

ESA NetCDF

Gridded Heracles Sigma0 land-ice (multimission
products)*

Cryosat*, Envisat,
merged

ESA NetCDF

Gridded Heracles Leading Edge Width (LEW) land-
ice (multimission products)*

Cryosat*, Envisat,
merged

ESA NetCDF

* Data to be published in the future

Basic Radar Altimetry Toolbox User Manual

3. How to install BRAT
BRAT binaries are available for Windows© XP and Linux (Redhat EL4).

The software can be delivered in two ways: either a single installation package file (for Windows© or
Linux), or a CD ROM version (containing the installation files for all the platforms but only one version of
the common files).
The names of the installation packages have the format: brat-VERSION-PLATFORM-installer.extension,
where VERSION is the release of brat, PLATFORM is the destination platform (Windows© or Linux) and
extension is a more or less platform-specific extension (.exe for Windows©, .bin for Linux).
In the CD-ROM, the names of the installation programs have the format setup-PLATFORM.extension,
with the same convention as above.

3.1. Windows© binaries
Double-click on the installation package or installation program and follow the instructions.
By default, the software will be put in C:\Program Files\brat-VERSION\ if you have write access to this
folder or in your user profile (normally C:\Documents and settings\ACCOUNT\brat-VERSION).
You may choose another folder if you want to.

3.2. Linux binaries

Execute the installation package or installation program from your file navigator or a console window and
follow the instructions. If you procured the installation package via a network it may not be set as
executable: you should then run the command ‘chmod +x brat-VERSION-linux-installer.bin’ in order to
make it executable.
By default, the software will be put in /usr/local if you have root permissions or in $HOME/brat-
VERSION.
You may choose another folder if you want to.

3.3. From source
All installation packages include the source files. If you want to or need to rebuild BRAT, you may install
only the source files. To do this first look in the chosen folder and read the README and INSTALL files.
The latter one gives you information about the dependencies (what must be installed before) and the
specific options which may be used.
As a convenience, you may have been given a DVD ROM containing almost all the tools needed, but
otherwise everything can be downloaded from the website for each software package.

Basic Radar Altimetry Toolbox User Manual

4. How to uninstall BRAT
When BRAT has been installed the whole installation process is registered and everything created at
that time can be removed (but not what may be created after that).

4.1. Windows© binaries
Go to the control panel, click on ‘Add/Remove programs’ and select the Brat entry. Everything created
during installation will then be removed.
Note that there is also a shortcut in the installation folder which you can click on to get the same result.

4.2. Linux binaries
In the installation folder (the default one or the one chosen), there is a script called uninstall-brat-
VERSION-linux which can be executed to remove everything created during the installation.
There is also a shortcut, called ‘Uninstall Basic Radar Altimetry Toolbox.desktop’, which can be used
from within your desktop manager (KDE, GNOME) to get the same result.

4.3. From source
If you have built BRAT from source code, you may have to remove everything by hand. The folder
containing the source files may be deleted entirely

Basic Radar Altimetry Toolbox User Manual

5. BRAT Graphical User Interface (GUI)

5.1. Overview
The BRAT Graphical User Interface (GUI) is a windowed interface to the BRAT Tools. Note that not all
tool functions are accessible from the GUI (some options are only available using the command files
directly).
If your screen is 768 pixels high, you might not see the very bottom of the window. You can then
maximize it, and you should then see the whole window.

The GUI manipulates objects called 'workspaces'. A workspace contains
• datasets, which are collections of files of the same kind,
• operations, for reading and/or processing and/or selecting data within a dataset,

An operation produces an intermediate file (NetCDF) and a command file,
• formulas, to enable you to use pre-defined combinations of data fields or to define them yourself

and re-use them later.
• views, that plot results of one or more operations

A ‘view’ produces a command file and opens the visualisation tool (see chapter 6)

A workspace can be saved for later use. Some or all elements of a workspace can be imported into
another workspace.
The ‘Logs’ tab displays the state of the programmes being run. Several operations and views can be
executed at the same time.

When launched, the GUI recalls the last used Workspace, or asks for a new one if no valid one is
available. There is no specific tab for the Workspace, only the menu the furthest to the left.

5.2. Starting with BRATGUI

5.2.1.Create a Workspace

When you open BRATGUI, the software asks for the name and location of the ‘workspace’ you will be
working in. If there are already one or more workspaces, the last used one is opened by default. You can
open another one, or create a new one by choosing ‘new’ in the ‘workspace’ menu (the furthest to the
left)

Figure 1: Creating a new workspace window

It is highly recommended to save the workspace (ctrl+s, or ‘save’ in the workspace menu) while
working. The workspace will nevertheless be saved when you quit BRATGUI (or, more accurately, you
will then be asked whether or not you wish to save the workspace).

Basic Radar Altimetry Toolbox User Manual

You can delete an existing workspace by choosing ‘delete’ in the ‘workspace’ menu, but note that you
can only use BRATGUI within a workspace and so you will have to create a new one if none are
available.

Items in the ‘Workspace’ menu are:
- New: creates a new workspace
- Open: opens a previously saved workspace
- Save: (or ctrl+s) saves the current workspace and all its datasets, operations, formulas and

displays (views)
- Import: imports all (datasets, operations, formulas and/or displays) of a previously saved

workspace
- Rename: renames the current workspace
- Delete: deletes the current workspace
- Recent workspaces: lists the 2 most recently used workspaces

5.2.2.Create a dataset

The first tab opened is ‘datasets’.

Figure 2: Creating a new dataset

Basic Radar Altimetry Toolbox User Manual

Choose ‘new’ in the ‘datasets’ menu if no datasets are available or if you wish to work on other data than
the one already selected. You can delete an existing dataset by choosing ‘delete’ in the ‘datasets’ menu,
but note that you can only use BRATGUI with a dataset which has been defined and so you will have to
create a new one if none are available.
The ‘Name’ dropdown list contains all the defined dataset names and allows you to select and rename a
dataset. You have to give the dataset a name (with no spaces or special characters in the name). If you
change the name within the ‘name’ box, and press the Enter key it renames your dataset.
Note that only coherent datasets are possible (i.e. same format, same data product). Use the ‘Check
files’ button at the bottom of the window to check for coherence.

Figure 3: A dataset. On the left, the list of files; right (top) the list of available fields for the selected file format,right
(bottom), the description of the selected field as it appears in the data dictionary.

When you have created your dataset and named it, you can then add files, chosen from your hard drive,
CD/DVD driver, local network or other medium. If you wish to add a long list of files, the ‘add dir’ button
allows you to choose all of the files by simply choosing the folder in which they are stored.
The ‘Clear’ button will remove the whole list.
You can delete selected file(s) by using the ‘Remove’ button, or the ‘delete’ key on your keyboard.

The ‘Add files’ button (at the bottom of the window) enables you to select those data files you wish to
work on. If there are a lot of files, you should preferably select a whole folder by clicking on ‘Add Dir’
The ‘Up’ ‘Down’ and ‘Sort’ buttons are useful when the order in which files are processed is important
(e.g. subtracting one file from another). ‘Up’ moves the selected file upwards in the list, ‘Down’ moves it

Basic Radar Altimetry Toolbox User Manual

downwards. ‘Sort’ puts the whole list into alphabetical or numerical order. It can also be used to check
for two occurrences) of the same file, or missing files, or to remove unwanted files from a list.

With this tab window,
• The selected files’ names are on the left;
• The right-hand display lists all fields defined for this kind of data and, below that is a more

detailed description of the selected field (extracted from the data dictionary).
You can sort the fields alphabetically by clicking on ‘name’, ‘record’, ‘unit’, ‘format’, or ‘dim’ (off
screen), at the top of the box, or view a field whose name begins with one or more letters by
typing them (fast).

The list of all the fields of the currently selected file is divided into 6 columns:
- Full name: the fully described name in the file structure hierarchy and related to the record.
- Record: the record containing the field. Many files have only 'header' and 'data' records while

others have more (e.g. Envisat ones)
- Name: the short field name
- Unit: the unit of the field
- Format: the format of the field inside the file. In BRAT all fields are read as floating-point values

(double).
- Dim: Dimension of the field (number of values in arrays, if the data is stored in an array)

Under the list there is a text box with a detailed description of the currently selected field (as extracted
from the data dictionary)

You may define as many datasets as you wish.
Note that if you want the same operation to be applied to several files separately, you will have to define
several datasets, or use the parameter files directly with a script (see section 7.3).

5.2.3.Create an operation

The second tab is ‘operations’.

Basic Radar Altimetry Toolbox User Manual

Figure 4: Creating a new 'operation'

If none exist, you have to create a new operation (you may give it any name, but there should be no
spaces or special characters in the name). Choose ‘new’ in the ‘Operations’ menu.
You may delete an existing operation by choosing ‘delete’ in the ‘Operations’ menu, but note that you
can only process data with BRATGUI with an operation which has been defined and so you will have to
create a new one if none exist.

Otherwise, you may work with a previously saved operation. The 'Name' dropdown list contains all the
defined operation names which can be selected and renamed. If you change the name within the ‘name’
box, it renames your operation and erases the command file that was created with the previous name.

If you want to apply the same operation to different datasets, you will have to re-create it as many times
as needed. Use the ‘Duplicate’ function in the operation menu to duplicate the operation exactly. You
can also use the parameter files directly with a script (see section 7.3).

Basic Radar Altimetry Toolbox User Manual

5.2.3.1. Data

Figure 5: Choosing a record within the selected dataset

Choose a dataset from the list of existing datasets to which to apply the operation.
Choose a record within the dataset, containing the data fields which interest you. The description of each
field is given below when you click on a particular field.

The ‘F’ and ‘S’ button are used to insert a field in either the selected ‘data expression (F)’ or the selected
‘Select expression (S)’

5.2.3.2. Created type
You can then decide whether you prefer to choose a ‘Y=F(X)’ or a ‘Z=f(X,Y)’ type of operation, i.e.:

- ‘Y=F(X)’,
if you wish to work with one – or several – field(s) with respect to another one;
typically, this leads to a curve kind of view.
The BRATCreateYFX program will generate the output of the operation.

- ‘Z=f(X,Y)’,
if you wish to work with one – or more – field(s) with respect to two others;
typically, with X=longitude and Y=latitude, this leads to a map (any field can be thus processed
with respect to any two others – but, for now, it is only possible to display maps within BRAT).
The BRATCreateZFXY program will generates the output of the operation.

Basic Radar Altimetry Toolbox User Manual

Figure 6: An 'Operations' tab window when the Z=F(X,Y) type is selected. Note the difference in the 'Data
Expression box tabs (in the middle of the window, see section 5.2.3.5): in Figure 5, above, in which only two tabs
were available when Y=F(X) was chosen (data field and X field). Here a third is visible, to define the Y field.

Basic Radar Altimetry Toolbox User Manual

5.2.3.3. Data mode

Figure 7: Choice of the data mode

The data mode is used when you have several values of a field for a given (X) or (X,Y). This is typically
the case for:

- crossover points between tracks
- several files available for different dates
- sub-sample data

The possible modes are:
- MEAN (default) : computes the mean for all values of the field within the dataset at each X (or

(X,Y))
- COUNT: returns the number of values of the field within the dataset at each X (or (X,Y))
- FIRST: returns the first encountered value of the field within the dataset (in the order of the list of

files as it appears in the ‘dataset’ tab)
- LAST: returns the last encountered value of the field within the dataset (in the order of the list of

files as it appears in the ‘dataset’ tab)
- MAX: gives the maximum value of the field within the dataset
- MIN: gives the minimum value of the field within the dataset
- PRODUCT: multiplies the selected field for each file within the dataset
- STDDEV: computes the standard deviation for all values of the field within the dataset at each X

(or (X,Y))

Basic Radar Altimetry Toolbox User Manual

- SUBTRACTION: subtracts the selected field for each file from the first of the list (file order
dependent)

- SUM: adds the selected field for each file

The data mode can be used
- to compute statistics.
- to do some arithmetic operations between files within a dataset (adding, subtracting or

multiplying: SUM, SUBTRACTION, PRODUCT)
- but can also be used for the display (MEAN, FIRST, LAST, MIN, MAX), if you prefer to visualise,

for instance, the last value rather than the mean one.

5.2.3.4. Functions
The 'Functions' area provides a simple way of including (and knowing) the available functions and
constants which can be used in formulas. By default, no functions are visible, but they appear in the
dropdown list if you click on it. For each function, if selected, you will see a short explanation of what it
does.

They are available for processing or selecting a data expression. Note that those functions will apply on
every field with the same name, for every file within the dataset.

Name Description Syntax Type
! logical negation operator NOT

The logical negation operator (!) reverses the
meaning of its operand.
The result is true if the converted operand is
false; the result is false if the converted operand
is true.

! expr1 Logical
operator

!= not-equal-to operator
The not-equal-to operator (!=) returns true if the
operands do not have the same value;
otherwise, it returns false
A != B is true (when no default in A or B) if
abs(A-B) >= epsilon

expr1 != expr2 Relational
operator

&& logical AND operator
The logical AND operator (&&) returns the
boolean value true if both operands are true and
returns false otherwise.
Logical AND has left associativity.

expr1 && expr2 Logical
operator

|| logical OR operator
The logical OR operator (||) returns the boolean
value true if either one operand is true or both
operands are true and returns false otherwise.
Logical OR has left associativity

expr1 || expr2 Logical
operator

< less than
It yields values of the Boolean type. The value
returned is false (0) if the relationship in the
expression is false; otherwise, the value returned
is true (1).

arithmetic expr1 <
arithmetic expr2

Relational
operator

<= less than or equal to
It yields values of the Boolean type. The value
returned is false (0) if the relationship in the
expression is false; otherwise, the value returned
is true (1).

arithmetic expr1 <=
arithmetic expr2

Relational
operator

== equal-to operator
A == B is true (when there is no default in A or
B) if abs(A-B) < epsilon

== Relational
operator

Basic Radar Altimetry Toolbox User Manual

The equal-to operator returns true (1) if both
operands have the same value; otherwise, it
returns false (0).

> greater than
It yields values of the Boolean type. The value
returned is false (0) if the relationship in the
expression is false; otherwise, the value returned
is true (1).

arithmetic expr1 >
arithmetic expr2

Relational
operators

>= greater than or equal to
It yields values of the Boolean type. The value
returned is false (0) if the relationship in the
expression is false; otherwise, the value returned
is true (1).

arithmetic expr1 >=
arithmetic expr2

Relational
operators

~ bitwise not operator
Takes the value as an integer (a default value if
the floating point one is outside the integer
range) and reverses each bit.

~ expr1 bitwise
operator

& bitwise and operator
Takes the value of each operand as an integer
(a default value if the floating point one is outside
the integer range) and does an and operation on
each corresponding bit
And operation: 0011 & 0101 = 0001

expr1 & expr2 bitwise
operator

| bitwise or operator
Takes the value of each operand as an integer
(a default value if the floating point one is outside
the integer range) and does an or operation on
each corresponding bit
Or operation: 0011 & 0101 = 0111

expr1 | expr2 bitwise
operator

() parenthesis operator
Isolates an expression (or a sub expression) in
order to take it as a whole.
Exemple: A * (B + C) multiplies (B + C) by A.
without parentheses, B would by multiplied by A
and then C added

(expr1)

DV Default value DV number
PI PI value PI number
PI2 PI/2 value PI2 number
PI4 PI/4 value PI4 number
abs absolute value

Calculates the absolute value.
abs(param1)

ceil ceiling of a value
Calculates the ceiling of a value.

ceil(param1)

cos cosine (radian)
Calculates the cosine (radian) of a value.

cos(param1)

cosd cosine (degree)
Calculates the cosine (degree) of a value.

cosd(param1)

deg2rad Translates Degree to Radian. deg2rad(param1) conversio
n

deg_normalize Normalizes longitude (degree)
Z = deg_normalize(X, Y) returns a value which
makes the following expressions true: Z = Y +
n*360, X <= Z < X+360

deg_normalize(para
m1, param2)

conversio
n

dv (DV) Default value DV number
exp exponential

Calculates the exponential.
exp(param1)

floor floor of a value
Calculates the floor of a value

floor(param1)

Basic Radar Altimetry Toolbox User Manual

frac fractional parts
Calculates the fractional parts of a value.

frac(param1)

iif Inline if
If the first parameter is true (not 0 and not default
value),
the second parameter is returned, otherwise the
third one is returned.
Logically equivalent to:
 if (param1 is true)
 return param2
 else
 return param3
 end if

iif(param1, param2,
param3)

iif3 Inline if with default value case
If the first parameter is true (not 0 and not default
value),
the second parameter is returned. If is is 0, the
third one is
returned, otherwise (it is a default value) the
fourth one is
returned.
Logically equivalent to:
 if (param1 is default value)
 return param4
 else
 if (param1 is true)
 return param2
 else
 return param3
 end if
 end if

iif3(param1,
param2, param3,
param4)

int integer parts
Calculates the integer parts of a value.

int(param1)

is_bounded Checks whether a value x is included
between two values (min/max).
is_bounded(min, x, max)

is_bounded(param1
,param2,param3)

is_bounded_strict Checks whether a value x is stricly included
between two values (min/max).
is_bounded_strict(min, x, max)

is_bounded_strict(p
aram1,param2,para
m3)

is_default Checks whether a value is a default value (1:
yes, 0: no)

is_default(param1)

log logarithm
Calculates the logarithm of a value

log(param1)

log10 base-10 logarithm
Calculates the base-10 logarithm of a value

log10(param1)

max Maximum
Calculates the larger of two values

max(param1,param
2)

min Minimum
Calculates the smaller of two values

min(param1,param
2)

mod floating-point remainder
Calculates the floating-point remainder

mod(param1,param
2)

rad2deg Translates Radian to Degree rad2deg(param1) conversio
n

round rounded value
Calculates the rounded value

round(param1)

sign Checks the sign of a value (-1: negative, 1:
positive or zero)

sign(param1)

sin sine (radian) sin(param1)

Basic Radar Altimetry Toolbox User Manual

Calculates the sine (radian) of a value.
sind sine (degreee)

Calculates the sine (degreee) of a value.
sind(param1)

sqr square
Calculates the square of a value.

sqr(param1)

sqrt square root
Calculates the square root of a value.

sqrt(param1)

tan tangent (radian)
Calculates the tangent (radian) of a value.

tan(param1)

tand tangent (degree)
Calculates the tangent (degree) of a value.

tand(param1)

to_date Date formats conversion
Translates a string value into a date value
Allowed formats are:
 YYYY-MM-DD HH:MN:SS.MS string.
 For instance:
 '1995-12-05 12:02:10.1230'
 '1995-12-05 12:02:10'
 '1995-12-05'

 a Julian string: format:positive 'Days Seconds
Microseconds'
 Seconds must be stricty less 86400 and
Microseconds must be stricty less than 1000000
 For instance:
 '2530 230 4569'

 a Julian string: format:positive decimal Julian
day
 For instance:
 '850.2536985'

For Julian string, it can contain its reference date
at the end by specifying @YYYY where YYYY is
the reference year that's must be one of 1950,
1958, 1985, 1990, 2000
The reference year YYYY stands for YYYY-01-
01 00:00:00.0
If no reference date is specified the default
reference date (1950) is used.
 For instance:
 '2530 230 4569@2000'
 '850.2536985@1990'
 '850.2536985@1950' is equal to '850.2536985'

Dates prior to 1950-01-01 00:00:00.0 are invalid

to_date(param1) conversio
n

NOTE: except when explicitly stated (as with iif3, is_default) every expression involving a default value
(also called missing value) is a default value. A true expression is an expression which is not 0 and not a
default value. The descriptions below are for expressions which do not contain default values (to simplify
their writing). For example the result of ‘A || B’ (A or B) is a default value if B is one even if A is true. 0
and default values are considered as false values (! X is a default value if X is also one, so X is false and
! X too).

The ‘F’ and ‘S’ button are used to insert a function in either the selected ‘data expression (F)’ or the
selected ‘Select expression (S)’. The function will appear there with the correct syntax (e.g.
function(param1,param2); you then have to replace ‘param1’, ‘param2’ etc. by the fields or numbers you
wish to apply the function to).

Basic Radar Altimetry Toolbox User Manual

You can use those functions for, among others:
- a test on a flag: Surface_type == 0 will return only the ‘open ocean’ flagged Jason-1 GDR data
- boundaries: is_bounded(-100,SSH,100) (or: (SSH >= -100) && (SSH <= 100))

5.2.3.5. Data expression

When your dataset and the type of operation are chosen, you have access to the definition of the Data
expression. You have two or three tabs (Fields, X and Y), depending on the type of operation. The
dropdown list contains the names of all the expressions while the text box below allows the value of the
expression to be written.

A data expression can be:
- only one field in a dataset (typically, for a map, longitude as x-axis, latitude as y-axis)
- a combination of fields, either +,-,* and /, or by using the available functions in the list to the right of the
‘data’ box (see 5.2.3.4).
- a pre-set combination of fields among the ones you will find in the ‘formulas’ box (see 5.2.3.7)

Note that, by default, X is set to longitude and Y to latitude. You may change this if you want to.

Figure 8: A data expression box with a field included (there is only one data field defining this expression), in the
Z=F(X,Y) case. Note the Unit (default unit as defined in the dataset); if prefered, you could type in ‘m’ or ‘km’. The
‘New data field’ button enables you to define more than one field to process with respect to the defined X and Y
axis.

Give a name to your data expression (for instance, ‘my_first_field’). Note that if you change the name, it
renames your expression. This will then be the default name on the plots, near to the scale if you have
not given a title to your field (in the options).

Type your expression (the name of one data field, or a combination of several) in the box below.
Alternatively, to appear in the same box, you can select either:

- a field within the dataset/record by selecting it in the list (you can sort the list alphabetically in
each column, or type in the first letters to find the right one) and then clicking on the ‘F’ button to
the right of the data fields list to have it inserted in place of your cursor in the data expression
box.

- or a ready-made expression by selecting it in the ‘formulas’ list and then clicking on the ‘F’ button
to the right of the formulas box, or by typing in the alias.

Then click on ‘field options’. There you can type in a title for your field. The title will be displayed as the
default name of the field in the plots (if no title is entered, it will be the data expression name).
If you choose a Z=F(X,Y) type, you can also choose to smooth and/or extrapolate the data by means of
a Loess filter so as to obtain a fully colored plot (and not individual tracks or points). In that case, you will
have to fill in the corresponding information in the X and Y fields, too.

Basic Radar Altimetry Toolbox User Manual

Figure 9: Option for a data field in the Z=F(X,Y) case.
For the Y=F(X) case, only the top two boxes are displayed.

You can define as many fields as you wish, by clicking on the ‘new data field’ button and repeating the
sequence above. Note that you must define at least one field. The choice of the X and Y axes and
their options apply to all the fields within the current operation. You cannot choose (for example) different
resolutions for X and Y for different fields within the same operation. The data mode is also the same for
all fields.

Figure 10: A data expression box with an X field included, for the Z=F(X,Y) case. Note the Unit (default unit as
defined in the dataset) and the data type (used to define default values, min, step and max).

When choosing the field to use as X axis:
- click on the X ‘tab’,
- choose a name (‘my_x_axis’),
- enter your expression or choose it from the lists (as for the field),
- click on ‘field options’. The option window will enable you to choose:

o the title of the axis,
If you choose a Z=F(X,Y) type, you will also be able to choose :

o the minimum and maximum values of the axis (typically, this can be used to define a
geographical sub-set)

o the step value, to define the resolution (longitude-latitude) of the output file.
The default value is 1/5°. However, note that the smaller the resolution, the longer will be
the execution time for the operation.

o the ‘Loess cut-off’ value, i.e. the number of grid points before the Loess filter becomes
equal to zero (odd number)

Basic Radar Altimetry Toolbox User Manual

Figure 11: Option for an X field for the Z=F(X,Y) case. Note the min, max and step values.
Loess cut-off is used when a filter has been defined in the data field options.
For the Y=F(X) case, only the top two boxes (Name and Title) are displayed.

Typical Loess filter cut-off values depend on the Step you choose and on the kind of filter you have
selected in your field (Smooth, Extrapolate or Loess). They are odd numbers (if you fill in an even
number, the number used will be your number+1).

• Smooth: smoothes the values of the data where there are already data (i.e. it will not fill in gaps
between tracks)

• Extrapolate: fills in the gaps between values (with some overlay on continents)
• Loess: smoothes and fills in the gap values (with some overlay on continents)

‘Extrapolate tends’ to keep data ground tracks visible. ‘Smooth’ spreads out the data, but tends to level
the maxima and minima and to generate ‘data’ on continents from ocean-only measurements. ‘Loess’
does both extrapolation and smoothing.

The general rule is that the higher the cut-off value, the more spread out the data will be, since the radius
of action of the filter will be greatest.

For good results to render along-track data, values of 31 begins to gives rather correct results, even if
they still show a hint of ground tracks.

Figure 12: Envisat Significant wave height computed with a ‘Loess’ filter and a Loess cut-off value of 31 in
longitude and latitude.

Basic Radar Altimetry Toolbox User Manual

Figure 13: The same data (Envisat Significant wave height) computed with (top to bottom) ‘Smooth’, ‘Extrapolate’
and ‘Loess’ filters, and with (left) a Loess cut-off value of 9 (all with a resolution of 1/3°). With a Loess cut-off of 9,
tracks are still visible.

If you choose a Y=F(X) type, you can also choose the data type of the axis (lat, lon, time or X for any
other kind of data used as X axis)

Note that you must have defined one X axis

If relevant (Z=F(X,Y)), do the same also for the Y axis. Note that, if you choose Z=F(X,Y) you must have
defined one Y axis .

Basic Radar Altimetry Toolbox User Manual

Figure 14: A data expression box with a Y field included. Note the Unit (default unit as defined in the dataset) and
the data type (used to define default values, min, step and max).

Figure 15: The dropdown list for a data expression with two data fields, one X field, one Y field

Beware when choosing your unit (you need to have a valid unit, i.e. one that is defined in the data
dictionary as such; see 5.2.3.6.Units for a list of valid units). If you choose a pre-saved formula: a default
‘count’ will appear as the unit. If you select one field in the dataset list and insert it by using the ‘F’ button,
it will automatically be filled with the correct unit (but if you finally write your own formula, the final unit
might be different). If the unit you defined does not fit the unit of the data, an error will be generated (in
the Log tab).

However, note that every operation is computed using SI units even if a sub-unit is defined for the data
(e.g. metres instead of cm, mm or km). Thus you can put ‘cm’ as the unit even if the data are in mm and
still end up with correct values.

There are 4 buttons to the right of the Data expression box. These are:
- Check, checks whether the expression is well-formed, i.e. if the syntax is correct (but NOT if it is

scientifically or even dimensionally correct…).
- Save as: saves the current data expression for future use within the workspace. It will then be

available in the ‘formulas’ box
- Reset empties the whole box
- Comment. The 'Comment' button enables you to associate a more detailed comment with the

expression (for convenience, it only appears as comments in files and is never used for
computing/viewing), for future reference

Basic Radar Altimetry Toolbox User Manual

Figure 16: A 'Comment' window. It can be used as a reminder of the expression and its meaning and if need be, of
its unit for future use.

5.2.3.6. Units
BRAT is able to understand all SI units and their sub-units, as defined in the International System, i.e.
case sensitive: “ms” means milliseconds, whereas “Ms” would means megaseconds), plus “count” for
data without dimension, and “dB”.
Typically, the units you might use are:
– metres (m, mm, cm, km,...)
– seconds (s, ms, etc., but also hours, h, days)
– m/s (km/s,...)
– degrees East (longitude)
– degrees North (latitude)
– degrees
– count
– dB

Note that all data fields are converted in SI units in the data dictionary.
Thus practical units such as “TECU” are converted (1 TECU (Total Electron Content Unit) = 1 × 1016

electrons/m²).
If you let “count” (which is the default) as unit, the resulting data will be in the basic SI unit (e.g. in
metres, even if the field(s) you used was in mm)

5.2.3.7. Formulas

In the Formula box, you will find pre-defined formulas (e.g. Sea Surface Height formulas from the
different satellites’ GDR fields) and also Data expressions or Selections previously saved by you within
the current workspace (or imported from another workspace).

Basic Radar Altimetry Toolbox User Manual

The ‘F’ and ‘S’ button are used to insert a formula in either the selected ‘data expression (F)’ or the
‘Select expression (S)’. The formula will appear there either as an alias (if you leave the ‘as alias’
checked), or complete (if you un-check ‘as alias’).

Figure 17: use of a pre-defined formula (Envisat SSH), by inserting its alias (top) and developed version (bottom
Note the unit, set by default to 'count', that you will have to change manually to ‘m’ (or a sub-unit of the metre)

5.2.3.8. Select expression

This box is for selecting data within the dataset: e.g. by date, boundaries, etc. or for editing it;
As there is only one selection expression, there is no dropdown list with names, just the text box for
entering the value of the expression to be edited.
It is in this text area that fields/functions/formulas are inserted when clicking on the 'S' buttons.

A data measurement in the Dataset files is selected only if the result of this expression if not 0 and not a
missing/default value. If no selection expression is defined this is the equivalent of selecting everything
(the expression value is '1')

Figure 18: A Selection expression (test on a 'flag' whose value is 0 over the open ocean)

Type in your selection expression. Alternatively, to insert it in the same box, you can select either:
- a field within the dataset/record by selecting it in the list (you can sort the list alphabetically in each
column, or type in the first letters to find the right one) and then clicking on the ‘S’ button to have it
inserted at the cursor position in the selection expression box.
- or a ready-made expression by selecting it in the ‘formulas’ list and then clicking on the ‘S’ button, or
typing in the alias.
Logical operators can be used to combine the conditions.

Figure 19: Another selection, using a formula alias, to edit values of SSH which are higher or lower than 100 m.
This expression could also have been written ‘(%{ENVISAT_SSH} <= 100) && (%{ENVISAT_SSH}>= -100), where
&& is the logical operator ‘AND’ (see function list for the complete list of operators)

Basic Radar Altimetry Toolbox User Manual

The selection operates on all available fields within the dataset (you can put in that you wish your X field
between min & max, your Y field between min & max and, for instance, your field between -100 and
100).

To the right of the Selection expression box, there are four buttons. These are as follows:
- Check: checks whether the expression is well-formed, i.e. if the syntax is correct (but NOT if it is

scientifically or even dimensionally correct…).
- Save as: saves the current Selection expression for future use within the workspace. It will then

be available in the ‘formulas’ box
- Reset: empties the whole box
- Comment: The 'Comment' button is used to associate a more detailed comment with the

expression (for convenience, it only appears as comments in files and is never used for
computing/viewing), for future reference

5.2.3.9. Output

Output gives the name of the output (netCDF) file. It is predefined using the name you gave to your
operation and cannot be changed within the GUI.

‘Execute’, bottom right, processes the defined operation on the whole selected dataset.

You may perform several different operations at the same time (i.e. execute one while another is being
processed), or an operation and a view (provided you are not trying to visualise the file being
processed). However, this will slow down each individual execution. In the ‘Log’ tab window you can see
the current tasks being executed (both operations and views), comments during execution (verbose
mode) and errors.

5.2.4.Create a view

The third tab is ‘Views’.
If none exist, you have to create a new view (name it as you wish, but without any spaces or special
characters in the name). Choose ‘new’ in the ‘Views’ menu.
The name is used to call the command file that will be executed to display the data and if need be to
retrieve your view in the future. The 'Name' dropdown list contains all the defined view names and can
be used to select and rename views.
You can delete an existing view by choosing ‘delete’ in the ‘Views’ menu, but note that you can only
visualise your data with BRATGUI with a view which has already been defined which means you will
have to create a new one if none exist.

Basic Radar Altimetry Toolbox User Manual

Figure 20: Creating a view, to launch the visualisation tool

Once you have named your view you then have to choose between ‘Y=F(X)’ and ‘Z=F(lon,lat)’
When you have done this, you will have access in the ‘Data’ box to the available fields corresponding to
either choice (output from operations computed within the workspace). They are given by operation/file
name/field name. You can refresh the list to update it with respect to the latest operations.

In the ‘Data’ box, select one or several data fields by clicking on them (ctrl + click for several fields) and
use the arrow to switch it or them from ‘available’ (left) to ‘selected’ (right). The X axis (and Y) has been
pre-defined in the ‘operation’ tab.

You can give your display a title (just below the ‘name’ of the view).

Basic Radar Altimetry Toolbox User Manual

5.2.4.1. ‘Y=F(X)’

Figure 21: Example of a ‘views’ tab when Y=F(X) is chosen

For such a plot, you can define a sub-set to be plotted (by X min, X max, Y (=field) min, Y (=field) max)
If you click on one of the selected data fields (right-hand list), you can see in the ‘Display field properties’
box below that the name of the represented field is also given. By default, it is the title of the field given in
the ‘options’ of the data expression, or the name of the field data expression.

‘Field group’ is used to group the selected fields – or not – in a same plot. By default, each field will have
a curve of a given color overlaid in the same plot. However, if you select the second field you wish to
visualise, type ‘2’ in ‘Field group’ and the two data fields will be visualised in different adjacent plots. You
can thus have as many plots as you have fields.

Basic Radar Altimetry Toolbox User Manual

5.2.4.2. ‘Z=F(lon,lat)’

Figure 22: Example of a ‘views’ tab when Z=F(lon,lat) is chosen

You can choose your projection in a list of pre-defined projections (it can be also changed in the
visualisation interface). By default this will be a 3D projection.

‘With Animation’ can be used to animate a series of maps. If you have several identical field names from
several operations (e.g. if you have computed the same field at different dates) and if you check this
option, you will have access to the ‘animation toolbar’ in the visualisation interface.

If you click on one of the selected data fields (right-hand list), you will be able to see the following in the
‘Display field properties’ box below:

- The name of the represented field.
By default, this will be the title of the field given in the ‘options’ of the data expression, or the
name of the field data expression (if no title was given).

- A choice between ‘solid color ’ and ‘contour’ representation. It is of course highly recommended
to choose at most two different fields to be displayed on the same plot, one represented in solid
color s, the other in contours, to be able to see something on the plot.

- Min and max of the color scale
- The color scale, among a pre-defined list of color scales, or in previously made and saved color

scale (see 6.2.2).
All those options can also be changed in the visualisation interface.

Basic Radar Altimetry Toolbox User Manual

‘Field group’ is used to group the selected fields – or not – in a same plot. Typically, if all fields have ‘1’
(default) you will have a color and a contour map plotted one overlaying the other. If you put a different
number for each field, you will have as many separate plot windows as you have typed numbers.

‘Execute’ will execute the request as it is in the defined view (request that is written in the command file
which name is shown left of the ‘execute’ button) and launch the visualisation tool (see chapter 6 for a
description of this interface). You can see in the ‘Log’ tab the current executions (both operations and
views) and the errors.

Basic Radar Altimetry Toolbox User Manual

6. Visualisation interface
The visualisation interface is called by executing a command file from the ‘views’ tab of the GUI. It can
also be used with a command file.

The visualisation options are quite different for an ‘Y=f(X)’ (curve) than for a ‘Z=F(lon,lat)’

6.1. ‘Y=F(X)’

Figure 23: An example Y=F(X) visualisation

In the ‘File’ menu, you can save your plot, in different image format (bmp – windows bitmap – jpeg, png,
pnm or tiff), or export it to gnuplot.
The ‘View’ menu enables you to display or not the right-hand panel with the properties.

Basic Radar Altimetry Toolbox User Manual

Figure 24: Datasets tab of the visualisation tool

First tab (‘datasets’) recalls the name of the field
as it appears in the Display Field properties of the
‘Views’ tab.
When a field is selected in this ‘datasets’ tab, you
have some options to choose the color and style
(full, dots, etc.) of the line and of the points (none
by default, circles, crosses, etc.). If there are
several fields to plot, you can thus enhance the
legibility of your plot.

Second tab (‘properties’) enable to choose several
options (some being already available within the
‘views’ tab; however, modifications done only in
the visualisation window will not be saved as part
of the workspace and thus cannot be recalled for
future use. We thus strongly recommend that you
choose options as min, max of both axis, units,
plot title and axis name within the Operations and
Views tabs.

The label of each axis includes by default the name of
the plotted field and its unit, with \n for line break and \t
for space.

 ‘Fallback range’ enables you to select in a more
restricted range (e.g. you selected a whole ground track,
but finally wish to look only at a -10 + 10°N range.
You can also zoom in on a portion of curve using middle
button of your mouse.

‘Current range’ indicates the min max of your current
view.

To go back to the first opened view, type on ‘r’.

Figure 25: Y-axis properties of a Y=F(X) plot, with only one
field selected for view. Label (including the unit), number of
ticks in the axis, min and max of the axis are shown. X-axis
properties are similar.

Basic Radar Altimetry Toolbox User Manual

.Figure 26: Zoom of the same curve than above

6.2. ‘Z=F(lon, lat)’

Note that, even if Z=F(X,Y) with any data field as X and as Y is possible to process within the
‘operations’ tab, only the case Z=F(longitude, latitude) (i.e., a map) is possible for now in BRAT.

In the ‘File’ menu, you can save your plot, in different image format (bmp – windows bitmap – jpeg, png,
pnm or tiff).

The ‘View’ menu enables you
- to display or not display the right-hand panel with the properties.
- display the color bar or not
- display the animation toolbar (if relevant, i.e. if you are visualising a series of fields with the same

name and chose the option ‘With animation’). Once in this toolbar, you can launch the animation
of the fields, stop it and control its speed.

- to open the color table editor and the contour table editor

Figure 27: Animation toolbar (available for a series of fields with the same name, option ‘With animation’ chosen).
The animation is available as visualisation (not to be saved). ‘Animate’ launch the animation, Reset reset the
animation to the first frame. The number after is the number of the frame. ‘Loop’ enables to loop the animation and
‘Speed’ to choose its speed (in frames per second).

Basic Radar Altimetry Toolbox User Manual

Figure 28: An example Z=F(lon, lat) visualisation, with default projection (3D) and the ‘Ozone’ color table

6.2.1.Display properties

Available display properties are:
- the projection. Several of them are available (see ‘Create a view’). You can change it on the fly,

even if you decided on another one in the ‘view’ tab of the GUI (but your choice will not be saved)

Basic Radar Altimetry Toolbox User Manual

Figure 29: Same plot than above, but with a different projection (Plate Carree)

- Centre point: define the centre of the display (only relevant for 2D maps, not for the ‘3D’
projection)

- Data layers: lists the different fields visualised and if each one is visualised as solid color or as
contours.
Edit open either the color table or the contour table editor (see section 6.2.2 and 6.2.3 below)
With these editors you can modify previous definitions (but, once again, your choices will not be
saved). If two fields are superimposed, you can switch contours and colors. This is why, in this
case, you will have two color tables in your plot (one for each field)
The number of labels and the range define those for the color table.

Basic Radar Altimetry Toolbox User Manual

Figure 30: Visualisation with color and contour (for the same field)

- View: There are 3 tabs available
o State: used to save a particular display for the duration of the session and to recall it by

its number.
Clear erases all the saved displays,
Full goes back to a full-sized view of the chosen area (if a zoom had been made)

o Zoom: used to visualise a specified area, defined by its minimum and maximum
longitude and latitude respectively (this does not work for the ‘3D’ projection).

o Z-height: only available for the 3D projection, it is used to render field values at the
surface as bumpiness (radius gives the height, factor the scale factor).

6.2.2.Color table editor

Several color tables are available within BRAT.
You can use any one of them. You can also make your own color table.

Basic Radar Altimetry Toolbox User Manual

Figure 31: The color table editor, with the list of predefined tables

In the ‘File’ menu of the color table editor, ‘Load color table’ loads a previously made color table.
Recent color table recall recently used ones,
and ‘save as’ to save the one you’ve just done.

The ‘Edit’ menu enables to change the number of color within an existing color table and the
interpolation between the different colors.

The ‘Mode’ menu enables to choose between predefined color tables, two-color gradient color tables
or multi-color gradient color tables.

6.2.2.1. two-color gradient color tables
The two-color gradient color table editor enables to make a color table by defining its first and last
colors.
Colors are defined by their Red, Green and Blue components and Alpha channel (for transparency).
Default is black (RGB=0,0,0) for both and no transparency (A=255).
You can click on ‘apply’ to look at the way it shows on your plot. When you are satisfied of your color
table, you can save it and recall it in future sessions.

Basic Radar Altimetry Toolbox User Manual

Figure 32: Two-color gradient color table editor

6.2.2.2. Multi-color gradient color tables
The multi-color gradient color table editor works much as the two-color one, except that you have to
define not only the first and last values, but also define intermediate one(s).

The definition of colors is the same (Red, Green, Blue + Alpha channel) and you also have a cursor
beneath the preview of the table that enables you to place your new color in the range.
To add a new color , click on ‘0’ in the ‘X-values’ list, then on ‘Insert color ’. You will then have a new
value, ‘1’, that you can change by moving the cursor. When you have placed your new value in the
range, define your color . Repeat the operation as many time as you wish to add colors. Note that you do
not have to define 255 colors (if you want a 255-color table) one by one, since the software interpolates
between the values you are giving, so choosing 5 or 7 of them is usually sufficient.

You can click on ‘apply’ to look at the way it shows on your plot. When you are satisfied with your color
table, you can save it and recall it for future sessions.

Basic Radar Altimetry Toolbox User Manual

Figure 33: Multi-color gradient, color table editor. When first opening it (left) and after defining 5 colors over the
whole range ; equally distributed (on the right

6.2.3.Contour table editor

The contour table editor enables you to choose the range and number of contours that you wish to see
on your plot, the width and color of the lines and whether you want labels on the contours or not and if
so, which style.
Note that your contour table cannot be saved and re-used for future use.

Basic Radar Altimetry Toolbox User Manual

Figure 34: Contour table editor

Basic Radar Altimetry Toolbox User Manual

7. Using BRAT in ‘command lines’ mode with parameter files
The GUI is there to ease the use of BRAT. However, everything made with the GUI can be made directly
by writing parameter files and execute them and more than what can be done with the GUI is possible
with parameter files.

Dictionaries of key functions that can be called within parameter files are available in annex B (Y=F(X),
annex C (Z=F(X,Y) and annex D (Display parameter file keys).

‘-h’ option offers help for launching the executable file
‘-k' offers help on parameter keys

7.1. Creating an output NetCDF file
A ‘Create’ parameter file typically consist of:
- the definition of a dataset (a list of files that will be processed),
- the name of the record within the dataset in which the data you are interested in are stored,
- = the definition of an X axis and of one or several ‘Field(s)’; in the Z=F(X,Y) case, also the definition of
an Y-axis,
- a selection expression, if need be
- the name and location of the NetCDF output file.

The definition of the axis or of a field includes the name of an existing data field, or the expression that
you wish to compute from several of them, a name (without any spaces or special characters), a unit, a
title (that may include spaces or special characters), a min and a max and information about a possible
filter

#----- GENERAL PROPERTIES -----

DATA_MODE=MEAN

#----- DATASET -----

RECORD=ra2_mds

FILE=File1
FILE=File2
…

#----- FIELDS -----
Y=lat
Y_NAME=lat
Y_TYPE=Latitude
Y_UNIT=degrees_north
Y_TITLE=Latitude
Y_FILTER=DV
Y_MIN=DV
Y_MAX=DV
Y_INTERVALS=DV
Y_LOESS_CUTOFF=DV

X=lon
X_NAME=lon
X_TYPE=Longitude
X_UNIT=degrees_east
X_TITLE=Longitude
X_FILTER=DV
X_MIN=DV
X_MAX=DV
X_INTERVALS=DV
X_LOESS_CUTOFF=DV

Basic Radar Altimetry Toolbox User Manual

FIELD=ra2_wind_sp
FIELD_NAME=my_first_field
FIELD_TYPE=Data
FIELD_UNIT=mm/s
FIELD_TITLE=Altimeter wind speed modulus
FIELD_FILTER=DV
FIELD_MIN=DV
FIELD_MAX=DV
FIELD_INTERVALS=DV
FIELD_LOESS_CUTOFF=DV

FIELD=alt_cog_ellip - ku_band_ocean_range - mod_dry_tropo_corr - inv_barom_corr -
(tot_geocen_ocn_tide_ht_sol1 + tidal_load_ht + long_period_ocn_tide_ht) -
solid_earth_tide_ht - geocen_pole_tide_ht - sea_bias_ku - ra2_ion_corr_ku -
mwr_wet_tropo_corr
FIELD_NAME=SSH
FIELD_TYPE=Data
FIELD_UNIT=m
FIELD_TITLE=my second field
FIELD_FILTER=DV
FIELD_MIN=DV
FIELD_MAX=DV
FIELD_INTERVALS=DV
FIELD_LOESS_CUTOFF=DV

#----- SELECT -----

#----- OUTPUT -----

OUTPUT=output_file.nc
Example parameter file for creating a Z=F(X,Y) output

You create the NetCDF file by typing
‘BratCreateZFXY.exe command_file.par’
(or ‘BratCreateYFX.exe command_file.par’)

You will then have a NetCDF file that you can either visualise through the tool provided within BRAT, or
with some other tool capable of reading NetCDF.

7.2. Visualising an output NetCDF file through BRAT
To visualise an output file, you have to write a second parameter file.
This kind of file is simpler than the one needed to create a NetCDF.

Basically, the commands needed are:
- the name of the file(s) to be displayed
- the title, projection
- the name of the field(s) to be displayed
- some information about the display (min, max, name, whether there is a contour or not, color

table…)

#!/usr/bin/env BratCreateZFXY
#Type:Z=F(X,Y)
#----- DATASET -----

FILE=Createenvisat_cycle.nc

#----- GENERAL PROPERTIES -----

Basic Radar Altimetry Toolbox User Manual

DISPLAY_TITLE=title of the plot

DISPLAY_GROUPBY_FILE=Y
DISPLAY_PROJECTION=3D

#----- sigma_0_ku FIELD -----

FIELD=sigma_0_ku

#----- sigma_0_ku FIELDS PROPERTIES -----

DISPLAY_NAME=sigma_0_ku
FIELD_GROUP=1
DISPLAY_MINVALUE=0.00000
DISPLAY_MAXVALUE=50.000
DISPLAY_CONTOUR=N
DISPLAY_SOLID_COLOR =Y
DISPLAY_COLORTABLE=DV

Example ‘display’ parameter file

You open the visualisation tool by typing:
‘BratDisplay.exe command_file.par’

7.3. Using the parameter files to process many datasets
A typical case in which using the parameter files will be much easier than using the GUI is when you
want to process the same operation on all the altimetry satellite cycles or for a long series of them.
Parameter files enable you to write a script that will process the same operation on a number of files.

You can either write the parameter file directly, or you can make the parameter file through the GUI, test
it on one cycle and then modify it (right-click) by replacing the cycle number by a character that will be
replaced consecutively by a list of cycle numbers through a script;

#!/usr/bin/env BratCreateZFXY
SRC_DATA_DIR and CYCLE are environment variables that can be set in a shell #
script

FILE=${SRC_DATA_DIR}/JA1_GDR_2PAP${CYCLE}_001.CNES
FILE=${SRC_DATA_DIR}/JA1_GDR_2PAP${CYCLE}_002.CNES
FILE=${SRC_DATA_DIR}/JA1_GDR_2PAP${CYCLE}_003.CNES

RECORD = data
VERBOSE = 2

ALIAS_NAME = SLA_JASON
ALIAS_VALUE= altitude - range_ku - model_dry_tropo_corr - inv_bar_corr -
(ocean_tide_sol1 + ocean_tide_equil + load_tide_sol1) - solid_earth_tide -
pole_tide - sea_state_bias_ku - iono_corr_alt_ku - rad_wet_tropo_corr - mss

X = longitude
X_TYPE = longitude
X_NAME = Longitude
X_UNIT = DV
X_TITLE = Longitude
X_MIN = DV
X_MAX = DV
X_INTERVALS= 1800

Y = latitude
Y_TYPE = latitude
Y_NAME = Latitude
Y_UNIT = DV

Basic Radar Altimetry Toolbox User Manual

Y_TITLE = Latitude
Y_MIN = DV
Y_MAX = DV
Y_INTERVALS= 900

SLA_JASON is an alias see ALIAS_NAME and ALIAS_VALUE above
FIELD= %{SLA_JASON}
FIELD_TYPE = data
FIELD_NAME = SLA
FIELD_UNIT = m
FIELD_TITLE= Sea Level Anomalies - Cycle ${CYCLE}
FIELD_FILTER = LOESS_EXTRAPOLATE
X_LOESS_CUTOFF = 5
Y_LOESS_CUTOFF = 5

SELECT = is_bounded(-1.0, %{SLA_JASON},1.0)

OUTPUT = ${BRATHL_DATA_DIR}/JasonSLA${CYCLE}.nc
OUTPUT_TITLE = Jason - Cycle ${CYCLE}

An example parameter file for creating output NetCDF for several cycles (SLA from Jason-1 GDRs)

REM Set the cycle number
SET CYCLE=109

REM Set the data source path
SET SRC_DATA_DIR=D:\data\gdr_jason\cycle_%CYCLE%

REM Launch 'Brat create Z=F(X,Y)' process
BratCreateZFXY C:\BRAT\MyCmdPath\BratCreateZFXYJasonSLASample.par

REM ------------------------------

REM Set another cycle number
SET CYCLE=110

REM Set the data source path
SET SRC_DATA_DIR=D:\data\gdr_jason\cycle_%CYCLE%

REM Launch 'Brat create Z=F(X,Y)' process
BratCreateZFXY C:\BRAT\MyCmdPath\BratCreateZFXYJasonSLASample.par

An example script for DOS (to be inserted in a .bat file) to launch a parameter file over several cycles

#!/bin/bash
BratCreateZFXYJasonSLASample.sh

Set the cycle number
export CYCLE=109

Set the data source path
export SRC_DATA_DIR=/data/gdr_jason/cycle_%CYCLE%

Launch 'Brat create Z=F(X,Y)' process
BratCreateZFXY BRAT/MyCmdPath/BratCreateZFXYJasonSLASample.par

Set the cycle number
export CYCLE=110

Set the data source path
export SRC_DATA_DIR=/data/gdr_jason/cycle_%CYCLE%

Basic Radar Altimetry Toolbox User Manual

Launch 'Brat create Z=F(X,Y)' process
BratCreateZFXY BRAT/MyCmdPath/BratCreateZFXYJasonSLASample.par

An example Shell script for Linux for launching a parameter file over several cycles

Basic Radar Altimetry Toolbox User Manual

8. BRATHL Application Programming Interfaces (APIs)
Some functions of BRAT are not available through the GUI, but through C, Fortran, IDL and Matlab APIs.
Note that for IDL and Matlab under Windows© you need to compile the API before using them.

8.1. Data reading function

BRATHL_READDATA reads data from a set of files; each measurement for a data is a scalar value (a
single number). It also gives statistics (e.g. a mean over a geographical area)

Possible arguments of this function are:

[in] fileNames: file name string (one file) or file names array
[in] recordName: Name of the fields record (for netCdf files the recordName is 'data')
[in] selection: Expression involving data fields which has to be true to select returned data. (if the string

is empty nothing is selected (in other words all of the data is taken)
[in] dataExpressions: Expression string (one expression) or expressions array applied to data fields to

build the wanted value.
[in] units: Wanted unit for each expression (string (one unit) or units array).

(if empty string, no unit conversion is applied to the data of the corresponding expression.
When a unit conversion has to be applied, the result of the expression is considered to be the
base unit (SI). For example if the wanted unit is grammes/litre, the unit of the expression is
supposed to be kilogrammes/m3 (internally all data are converted to the basic unit of the actual
fields unit which is coherent with the above assumption).

[in/out] results: Data read. Must be an array (dim = number of dataExpressions) of values to read.
[in] ignoreOutOfRange: Skip excess data. 0=false, other = true

Must be false if ‘statistics’ is true.
[in] statistics: returns statistics on data instead of data themselves

0=false, other = true
If statistics is true, ignoreOutOfRange must be false.
 The returned values (5 values) for each expression are:
- Count of valid data taken into account.
 Invalid data are those which are equal to the default/missing value
- Mean of the valid data.
- Standard deviation of the valid data
- Minimum value of the valid data
- Maximum value of the valid data

[in] defaultValue: value to use for default/missing values
This is the value you want to indicate that a value is missing or invalid.
return 0 or error code.

Syntax: see annexes
• for IDL
• for Matlab
• for Fortran
• for C

8.2. Cycle/date conversion functions
Two functions are available to convert between cycle/pass and date.

Syntax: see annexes
• for IDL
• for Matlab
• for Fortran
• for C

Basic Radar Altimetry Toolbox User Manual

BRATHL_CYCLE2YMDHMSM Converts a cyle/pass into a date

Arguments of this function are:
[in] mission :

0 : Topex/Poseidon
1 : Jason-1
2 : ERS2
3 : Envisat
4 : ERS1-A
5 : ERS1-B
6 : GFO

[in] cycle : number of cycles
[in] pass : number of passes in the cycle

Outputs are:
[out] dateYMDHMSM : date to convert

BRATHL_YMDHMSM2CYCLE Converts a date into a cycle/pass

Arguments of this function are:
[in] mission : mission type :

0 : Topex/Poseidon
1 : Jason-1
2 : ERS2
3 : Envisat
4 : ERS1-A
5 : ERS1-B
6 : GFO

[in] dateYMDHMSM : date to convert

Outputs are:
[out] cycle : number of cycles
[out] pass : number of passes in the cycle

8.3. Date conversion/computation functions
A set of functions is available to convert between the different kinds of date formats:

- days-seconds-microseconds dates:
- Julian decimal dates:
- year, month, day, hour, minute, second, microsecond dates:

Syntax: see annexes
• for IDL
• for Matlab
• for Fortran
• for C

BRATHL_DAYOFYEAR Retrieves the day of year of a date

BRATHL_NOWYMDHMSM Gets the current date/time

BRATHL_SETREFUSER1 Set user-defined reference dates
BRATHL_SETREFUSER2 Set user-defined reference dates

Basic Radar Altimetry Toolbox User Manual

BRATHL_DIFFDSM Computes the difference between two days-seconds-microseconds
dates (date1 - date2)
the result is expressed in a decimal number of seconds

BRATHL_DIFFJULIAN Computes the difference between two decimal Julian dates (date1 -
date2)
the result is expressed in a decimal number of seconds

BRATHL_DIFFYMDHMSM Computes the difference between two year, month, day, hour,
minute, second, microsecond dates (date1 - date2)
the result is expressed in a decimal number of seconds

BRATHL_DSM2JULIAN Converts a days-seconds-microseconds date into a decimal Julian
date, according to refDate parameter

BRATHL_DSM2SECONDS Converts a days-seconds-microseconds date into seconds,
according to refDate parameter

BRATHL_DSM2YMDHMSM Converts a days-seconds-microseconds date into a year, month,
day, hour, minute, second, microsecond date

BRATHL_JULIAN2DSM Converts a decimal Julian date into a days-seconds-microseconds
date, according to refDate parameter

BRATHL_JULIAN2SECONDS Converts a decimal Julian date into seconds, according to refDate
parameter

BRATHL_JULIAN2YMDHMSM Converts a decimal Julian date into a year, month, day, hour,
minute, second, microsecond date

BRATHL_SECONDS2DSM Converts seconds into a days-seconds-microseconds date,
according to refDate parameter

BRATHL_SECONDS2JULIAN Converts seconds into a decimal Julian date, according to refDate
parameter

BRATHL_SECONDS2YMDHMSM Converts seconds into a a decimal Julian date, according to refDate
parameter

BRATHL_YMDHMSM2DSM Converts a year, month, day, hour, minute, second, microsecond
date into a days-seconds-microseconds date, according to refDate
parameter

BRATHL_YMDHMSM2JULIAN Converts a year, month, day, hour, minute, second, microsecond
date into a decimal Julian date, according to refDate parameter

BRATHL_YMDHMSM2SECONDS Converts a year, month, day, hour, minute, second, microsecond
date into seconds, according to refDate parameter

8.4. Named structures
Several structures are also available, to represent the different kinds of date formats

Syntax: see annexes
• for IDL
• for Matlab
• for Fortran
• for C

BRATHL_DATEYMDHMSM YYYY-MM-DD HH:MN:SS:MS date structure
YEAR
MONTH
DAY
HOUR
MINUTE
SECOND
MUSECOND

Basic Radar Altimetry Toolbox User Manual

BRATHL_DATEDSM day/seconds/microseconds date structure
REFDATE reference date
DAYS numbers of days
SECONDS numbers of seconds
MUSECONDS numbers of microseconds

REFDATE is the reference date i.e :
 0: 1950-01-01 00:00:00.0
 1: 1958-01-01 00:00:00.0
 2: 1985-01-01 00:00:00.0
 3: 1990-01-01 00:00:00.0
 4: 2000-01-01 00:00:00.0
 5: user reference 1
 6: user reference 2
values of 5 and 6 allow users to set two specific reference dates of
their choice (see BRATHL_SETREFUSER1 and
BRATHL_SETREFUSER2 functions)

BRATHL_DATESECOND decimal seconds date structure
REFDATE reference date - see :BRATHL_DATEDSM
NBSECONDSdecimal numbers of seconds
(seconds.microseconds)

BRATHL_DATEJULIAN decimal Julian date structure
REFDATE reference date - see :BRATHL_DATEDSM
JULIAN decimal Julian day

Basic Radar Altimetry Toolbox User Manual

Annex A. List of datasets read by BRAT

Cryosat product overview

product type description
SIR1LRM_FR SIRAL FBR-LRM mode product (Rx1 channel)
SIR2LRM_FR SIRAL FBR-LRM mode product (Rx2 channel)
SIR1FDM_FR SIRAL FBR-FDM mode product (Rx1 channel)
SIR2FDM_FR SIRAL FBR-FDM mode product (Rx2 channel)
SIR1SAR_FR SIRAL FBR-SAR mode product (Rx1 channel)
SIR2SAR_FR SIRAL FBR-SAR mode product (Rx2 channel)
SIR_SIN_FR SIRAL FBR-SARin mode product
SIR_SIC3FR SIRAL FBR-CAL3 mode product
SIR_LRM_1B SIRAL L1B LRM product
SIR_FDM_1B SIRAL L1B FDM product
SIR_SAR_1B SIRAL L1B SAR mode product
SIR_SIN_1B SIRAL L1B SARin mode product
SIR1LRM_0M SIRAL MON-LRM/TRK product (Rx1 channel)
SIR2LRM_0M SIRAL MON-LRM/TRK product (Rx2 channel)
SIR1SAR_0M SIRAL MON-SAR product (Rx1 channel)
SIR2SAR_0M SIRAL MON-SAR product (Rx2 channel)
SIR_SIN_0M SIRAL MON-SARin product
SIR_SIC40M SIRAL MON-CAL4 product
SIR1LRC11B SIRAL CAL1-LRM product (Rx1 channel)
SIR2LRC11B SIRAL CAL1-LRM product (Rx2 channel)
SIR1SAC11B SIRAL CAL1-SAR product (Rx1 channel)
SIR2SAC11B SIRAL CAL1-SAR product (Rx2 channel)
SIR_SIC11B SIRAL CAL1-SARin product
SIR_SICC1B SIRAL complex CAL1-SARin product
SIR1SAC21B SIRAL CAL2-SAR product (Rx1 channel)
SIR2SAC21B SIRAL CAL2-SAR product (Rx2 channel)
SIR1SIC21B SIRAL CAL2-SARin product (Rx1 channel)
SIR2SIC21B SIRAL CAL2-SARin product (Rx2 channel)
SIR_SIC31B SIRAL CAL3 product
SIR_LRM_2_ SIRAL L2 product from LRM processing
SIR_FDM_2_ SIRAL L2 product from fast delivery ocean processing
SIR_SIN_2_ SIRAL L2 product from SARin processing
SIR_SID_2_ SIRAL L2 product from SARin degraded processing
SIR_SAR_2A SIRAL L2 product from SAR step 1 processing
SIR_SAR_2B SIRAL L2 product from SAR step 2 processing
SIR_GDR_2A SIRAL L2 consolidated product including SAR step 1 data (SIR_SAR_2A)
SIR_GDR_2B SIRAL L2 consolidated product including SAR step 2 data (SIR_SAR_2B)
SIR_LRMI2_ SIRAL intermediate L2 product from LRM processing
SIR_FDMI2_ SIRAL intermediate L2 product from fast delivery ocean processing
SIR_SINI2_ SIRAL intermediate L2 product from SARin processing

Basic Radar Altimetry Toolbox User Manual

SIR_SIDI2_ SIRAL intermediate L2 product from SARin degraded processing
SIR_SARI2A SIRAL intermediate L2 product from SAR step 1 processing
SIR_SARI2B SIRAL intermediate L2 product from SAR step 2 processing

Envisat product overview

product type description
RA2_FGD_2P RA-2 Fast Delivery Geophysical Data Record
RA2_GDR_2P RA-2 Geophysical Data Record
RA2_IGD_2P RA-2 Intermediate Geophysical Data Record
RA2_MWS_2P RA-2 Sensor Data Record
RA2_WWV_2P RA-2 wind/wave product for Meteo Users

Jason-1 product overview

product type description
JA1_OSD_2P The Operational Sensor Data Record (OSDR), produced on a NRT basis
JA1_IGD_2P The Interim Geophysical Data Record (IGDR)
JA1_GDR_2P The Geophysical Data Record (GDR)
JA1_SDR_2P The Sensor Geophysical Data Record (SGDR)

Topex/Poseidon product overview
Topex/Poseidon radar altimetry products

product type description
CYCLE_HEADER_FILE The GDR-M cycle header file
PASS_FILE The GDR-M passfile
XNG_FILE The crossover point file

ERS-1 and 2 product overview
ERS-1 and ERS-2 radar altimetry products

product type description

OPR_pass_file Same as the off-line intermediate product but enhanced with all
geophysical corrections and precise orbit altitude.

GFO product overview

product type description

GDR

The GDR is generated from GFO Sensor Data Records (SDRs), precise
laser orbit ephemerides provided by NASA Goddard Space Flight Center and
Raytheon ITSS, environmental corrections, and ancillary geophysical
variables.

PODAAC product overview
Physical Oceanography Distributed Active Archive Center radar altimetry products for Jason-1 and
Topex/Poseidon

product type description
J1SSHA_CYCLE_HEADER_FILE The PODAAC JASON-1 SSHA cycle header file

Basic Radar Altimetry Toolbox User Manual

TPSSHA_CYCLE_HEADER_FIL
E

The PODAAC TOPEX/POSEIDON SSHA cycle header
file

J1SSHA_PASS_FILE The PODAAC JASON-1 SSHA pass file
TPSSHA_PASS_FILE The PODAAC TOPEX/POSEIDON SSHA pass file
J1SSHA_ATG_FILE The PODAAC JASON-1 Along Track Gridded SSHA file

TPSSHA_ATG_FILE The PODAAC TOPEX/POSEIDON Along Track Gridded
SSHA file

HDF products (including NetCDF)
HDF products are self describing products.

This means that when an HDF file is opened one can retrieve the product structure from the file itself.
For this reason, BRAT will not store fixed product format descriptions for HDF files in the Data Dictionary
(you will therefore also not find HDF product format descriptions in this documentation). What BRAT will
do is use the underlying HDF4 and HDF5 libraries to retrieve the product format dynamically once an
HDF file is opened. Based on this format BRAT will create, on the fly, a mapping of the HDF product
structure to one that is based on the Data Dictionary data types

However, to be properly interpreted in the toolbox, a HDF product needs a description module to be
added.

For example, in order to (really) read a NetCDF files we need to:
1- Access to NetCDF attributes

2- Identify default/missing values (see _FillValue standard attribute)

3- Convert data to its actual value (not the value stored in file): see scale_factor and add_offset standard
attributes.

4- Interpret the structure of file to compute actual values of data (and not solely returning the NetCDF
variables values 'as is').
5- Avoid making available variables belonging to data structure (which are not the data themselves)

Aviso Altimetry data in NetCDF

product type description

NRT- or DT-MSLA (h) Ssalto/Duacs multimission Near real-time or Delayed
time Maps of sea level anomalies (gridded)

NRT- or DT-MSLA (uv)
Ssalto/Duacs multimission Near real-time or Delayed
time Geostrophic velocities associated to the Maps of
sea level anomalies (gridded)

NRT- or DT-MSLA (err)
Ssalto/Duacs multimission Near real-time or Delayed
time Maps of sea level anomalies Formal mapping error
(gridded)

NRT- or DT-SLA Ssalto/Duacs multimission Near real-time or Delayed
time Sea level anomalies (along-track)

NRT- or DT-NRT- or DT-MADT
(h)

Ssalto/Duacs multimission Near real-time or Delayed
time Maps of absolute dynamic topography (gridded)

NRT- or DT-MADT (uv)
Ssalto/Duacs multimission Near real-time or Delayed
time Geostrophic velocities associated to the Maps of
absolute dynamic topography (gridded)

NRT- or DT-ADT Ssalto/Duacs multimission Near real-time or Delayed
time Absolute dynamic topography (along-track)

Monomission DT-SLA Delayed time Sea level anomalies (along-track)
Monomission DT-CorSSH Delayed time Corrected sea surface height (along-track)

Basic Radar Altimetry Toolbox User Manual

NRT-MSWH Near real-time Maps of Significant wave height (gridded)
NRT-MWind Near real-time Maps of Wind speed modulus (gridded)

Basic Radar Altimetry Toolbox User Manual

Annex B.Y=F(X) parameter file keys

NOTE: A help on parameter file keywords can be obtained by: “BratCreateYFX –k”

FILE Type : Str Count : [1-n]
Input file name.

RECORD Type : Str Count : 1
Record set name to take into account for a file.

OUTPUT Type : Str Count : 1
Name of created/modified file.

OUTPUT_TITLE Type : Str Count : [0-1]
Title of created/modified file (string describing the
content and which should appear as a graphic title,
for example).
(Default="")

SELECT Type : Expr Count : [0-n]
True for record values selected.
(Default=1)

FIELD Type : Expr Count : [1-20]=X
Expression of fields of *RECORD* to take into account.

FIELD_NAME Type : Name Count : X
Name of the *FIELD* data

FIELD_TYPE Type : KW1 Count : X
Type of *FIELD* data.

FIELD_UNIT Type : Unit Count : X
Unit of *FIELD* expression.

FIELD_TITLE Type : Str Count : X
Long name describing *FIELD*. The one which should
appear in graphics on axis or legends, for example.

DATA_MODE Type : KW2 Count : [0-1]
Keyword to indicate how data are stored/computed.
(Default=MEAN)

X Type : Expr Count : 1
Expression of fields of *RECORD* to take into account.

X_NAME Type : Name Count : 1
Name of the *X* data

X_TYPE Type : KW1 Count : 1
Type of *X* data (normally X, T or longitude).

X_UNIT Type : Unit Count : 1
Unit of *X* expression

X_TITLE Type : Str Count : 1
Long name describing *X*. The one which should appear
in graphics on axis or legends, for example.

ALIAS_NAME Type : Name Count : [0-n]=N
Name of an alias. An alias is a value which can be used
anywhere in another value of field by mean of
%{NAME} construct. Names are case sensitive.
If a name reference (%{XXX}) does not correspond to
an actually defined alias, the expansion is an empty
string.
(Default=None)

ALIAS_VALUE Type : Str Count : N
The value of the alias. ALIAS_VALUE keyword must have at
least as many occurences as the ALIAS_NAME one.

VERBOSE Type : Int Count : [0-1]
Amount of output: 0=None...5=Debug.
(Default=0)

 54

Basic Radar Altimetry Toolbox User Manual

=====================
Description of types:

Name String beginning with a letter and containing only letters,
digits and '_'

Int Integer
Expr Combination of fields of the current record.

An expression which can contain function calls like
trigonometric, conversion, test...

Str String. Leading and trailing blanks are ignored.
Unit Unit string conforming to Udunits package and the special

keyword 'DATE' which means that the data is a date.
KW1 Keywords: X/Y/Z/T/Latitude/Longitude/Data
KW2 Keywords: FIRST/LAST/MIN/MAX/MEAN/STDDEV/COUNT

 55

Basic Radar Altimetry Toolbox User Manual

Annex C.Z=F(X,Y) parameter file keys
NOTE: A help on parameter file keywords can be obtained by: “BratCreateZFXY –k”

FILE Type : Str Count : [1-n]
Input file name.

OUTPUT Type : Str Count : 1
Name of created/modified file.

OUTPUT_TITLE Type : Str Count : [0-1]
Title of created/modified file (string describing the
content and which should appear as a graphic title,
for example).
(Default="")

SELECT Type : Expr Count : [0-n]
True for record values selected.
(Default=1)

RECORD Type : Str Count : 1
Record set name to take into account for a file.

DATA_MODE Type : KW2 Count : [0-1]
Keyword to indicate how data are stored/computed.
(Default=MEAN)

POSITION_MODE Type : KW3 Count : [0-1]
How position is computed.
(Default=NEAREST)

OUTSIDE_MODE Type : KW4 Count : [0-1]
How data outside limits are managed.
(Default=STRICT)

X Type : Expr Count : 1
Expression of fields of *RECORD* to take into account.

X_NAME Type : Name Count : 1
Name of the *X* data

X_TYPE Type : KW1 Count : 1
Type of *X* data (normally X, T or longitude).

X_UNIT Type : Unit Count : 1
Unit of *X* expression

X_TITLE Type : Str Count : 1
Long name describing *X*. The one which should appear
in graphics on axis or legends, for example.

X_INTERVALS Type : Int Count : 1
Number of intervals between Min and Max for *X*.
(Default=180 for lat 360 for lon)

X_MIN Type : Flt Count : 1
Min value for *X* expression storage.
(Default=-90 for lat, -180 for lon)

X_MAX Type : Flt Count : 1
Max value for *X* expression storage.
(Default=90 for lat, 180 for lon)

X_LOESS_CUTOFF Type : Int Count : 1
Distance (in dots) where LOESS filter reaches 0 along
X axis. Must be an odd integer. If 1 or 0, Distance
computation is disabled. Needed only if at least
one filter is asked.
(Default=0)

Y Type : Expr Count : 1
Expression of fields of *RECORD* to take into account.

Y_INTERVALS Type : Int Count : 1
Number of intervals between Min and Max for *Y*.
(Default=180 for lat 360 for lon)

 56

Basic Radar Altimetry Toolbox User Manual

Y_NAME Type : Name Count : 1
Name of the *Y* data.

Y_TYPE Type : KW1 Count : 1
Type of *Y* data (normally X, T or longitude).

Y_UNIT Type : Unit Count : 1
Unit of *Y* expression.

Y_TITLE Type : Str Count : 1
Long name describing *Y*. The one which should appear
in graphics on axis or legends, for example.

Y_MIN Type : Flt Count : 1
Min value for *Y* expression storage.
(Default=-90 for lat, -180 for lon)

Y_MAX Type : Flt Count : 1
Max value for *Y* expression storage.
(Default=90 for lat, 180 for lon)

Y_LOESS_CUTOFF Type : Int Count : 1
Distance (in dots) where LOESS filter reaches 0 along
Y axis. Must be an odd integer. If 1 or 0, Distance
computation is disabled. Needed only if at least
one filter is asked.
(Default=0)

FIELD Type : Expr Count : [1-20]=X
Expression of fields of *RECORD* to take into account.

FIELD_NAME Type : Name Count : X
Name of the *FIELD* data

FIELD_TYPE Type : KW1 Count : X
Type of *FIELD* data.

FIELD_UNIT Type : Unit Count : X
Unit of *FIELD* expression.

FIELD_TITLE Type : Str Count : X
Long name describing *FIELD*. The one which should
appear in graphics on axis or legends, for example.

FIELD_FILTER Type : KS1 Count : X
How to filter the data.

ALIAS_NAME Type : Name Count : [0-n]=N
Name of an alias. An alias is a value which can be used
anywhere in another value of field by mean of
%{NAME} construct. Names are case sensitive.
If a name reference (%{XXX}) does not correspond to
an actually defined alias, the expansion is an empty
string.
(Default=None)

ALIAS_VALUE Type : Str Count : N
The value of the alias. ALIAS_VALUE keyword must have at
least as many occurences as the ALIAS_NAME one.

VERBOSE Type : Int Count : [0-1]
Amount of output: 0=None...5=Debug.
(Default=0)

=====================
Description of types:

Name String beginning with a letter and containing only letters,
digits and '_'

Flt Floating point number
Int Integer
Expr Combination of fields of the current record.

An expression which can contain function calls like
trigonometric, conversion, test...

 57

Basic Radar Altimetry Toolbox User Manual

Str String. Leading and trailing blanks are ignored.
Unit Unit string conforming to Udunits package and the special

keyword 'DATE' which means that the data is a date.
KW1 Keywords: X/Y/Z/T/Latitude/Longitude/Data
KW2 Keywords: FIRST/LAST/MIN/MAX/MEAN/STDDEV/COUNT
KW3 Keywords: EXACT/NEAREST

EXACT: Measures which are exactly on boundaries
(grid lines) are keeped others are ignored
NEAREST: Get the nearest boundary.

KW4 Keywords: STRICT/RELAXED/BLACK_HOLE
STRICT: Measure outside limits are ignored
RELAXED: Measure outside limits are ignored if
they are farther than a half step from
the limit.
BLACK_HOLE: Everything outside the limit is
considered to be on the limit.

KS1 Set of keywords from: NONE, LOESS_SMOOTH, LOESS_EXTRAPOLATE,
LOESS (LOESS means LOESS_SMOOTH and LOESS_EXTRAPOLATE)

 58

Basic Radar Altimetry Toolbox User Manual

Annex D.Display parameter file keys
NOTE: A help on parameter file keywords can be obtained by: “BratDisplay –k”

FILE Type : Str Count : [1-n]
Input file name.

FIELD Type : Expr Count : [1-23]=X
Expression of fields of *RECORD* to take into account.

FIELD_GROUP Type : Int Count : X
Group id from where belongs *FIELD*. generally used to
group many fields in one plot.

DISPLAY_PROPERTIES Type : Bool Count : [0-1]
Indicates if property panel is shown.
(Default=No)

DISPLAY_TITLE Type : Str Count : [0-1]
Title of the plot to be displayed.
(Default="")

DISPLAY_ANIMATIONBAR Type : Bool Count : [0-1]
Keyword to indicate if property panel is shown.
(Default=No)

DISPLAY_COLORBAR Type : Bool Count : [0-1]
Keyword to indicate if color bar (legend) is shown.
(Default=Yes)

DISPLAY_CENTERLAT Type : Flt Count : [0-1]
Latitude of the projection's center point.
(Default=0)

DISPLAY_CENTERLON Type : Flt Count : [0-1]
Longitude of the projection's center point.
(Default=0)

DISPLAY_PROJECTION Type : KW9 Count : [0-1]
Projection to use for mapping the world globe.
(Default=3D)

DISPLAY_COASTRESOLUTION Type : KW6 Count : [0-1]
Resolution of the coast line drawm on the map.
Recommended value: low.
(Default=low)

DISPLAY_ZOOM_LON1 Type : Flt Count : [0-1]
Zoom area west side.
(Default=-180)

DISPLAY_ZOOM_LON2 Type : Flt Count : [0-1]
Zoom area east side.
(Default=180)

DISPLAY_ZOOM_LAT1 Type : Flt Count : [0-1]
Zoom area south side.
(Default=-90)

DISPLAY_ZOOM_LAT2 Type : Flt Count : [0-1]
Zoom area north side.
(Default=90)

DISPLAY_GROUPBY_FILEType : Bool Count : [0-1]
For world plot. When several files are in input, this
parameter indicates if fields are displayed in the same
plot (group field by file) or in different plots (one plot
by file).
(Default=Yes)

DISPLAY_XMINVALUE Type : Flt Count : [0-1]
Minimum X coordinate value to use in XY plot.
(Default=min of data values for X axis)

DISPLAY_XMAXVALUE Type : Flt Count : [0-1]

 59

Basic Radar Altimetry Toolbox User Manual

Maximum X coordinate value to use in XY plot.
(Default=max of data values for X axis)

DISPLAY_YMINVALUE Type : Flt Count : [0-1]
Minimum Y coordinate value to use in XY plot.
(Default=min of data values for Y axis)

DISPLAY_YMAXVALUE Type : Flt Count : [0-1]
Maximum Y coordinate value to use in XY plot.
(Default=max of data values for Y axis)

DISPLAY_XLABEL Type : Str Count : [0-1]
X axis label to be displayed.
(Default=field title or field name)

DISPLAY_YLABEL Type : Str Count : [0-1]
Y axis label to be displayed.
(Default=field title or field name)

DISPLAY_XTICKS Type : Int Count : [0-1]
Number of ticks for the X axis.
(Default=6)

DISPLAY_YTICKS Type : Int Count : [0-1]
Number of ticks for the Y axis.
(Default=6)

DISPLAY_NAME Type : Str Count : [0-n]=W
Field name to be displayed.

DISPLAY_OPACITY Type : Flt Count : 0 or W
Opacity of the color value map image:
1.0 color is totally opaque
0.0 is completely transparent.
(Default=0.7)

DISPLAY_MINVALUE Type : Flt Count : 0 or W
Minimum color table value to use in plot.
(Default=min of data values)

DISPLAY_MAXVALUE Type : Flt Count : 0 or W
Maximum color table value to use in plot.
(Default=max of data values)

DISPLAY_NUMCOLORLABELS Type : Int Count : 0 or W
Number of labels shown on the plot's color bar.
(Default=2)

DISPLAY_COLORTABLE Type : Str Count : 0 or W
Name of a predefined color table:
Aerosol
Blackbody
BlackToWhite
Cloud
Ozone
GreenToRed
Rainbow
RedToGreen
WhiteToBlack
or name of a file containing the color table definition
(absolute or relative path).
(Default=Aerosol)

DISPLAY_COLORCURVE Type : KW5 Count : 0 or W
Set the color table on a specific curve.
(Default=Linear)

DISPLAY_CONTOUR Type : Bool Count : 0 or W
Indicates if the contour layer of the field is shown or not.
(Default=No)

DISPLAY_CONTOUR_NUMBER Type : Int Count : 0 or W
Number of contour lines to generate
(equally spaced contour values between specified range

 60

Basic Radar Altimetry Toolbox User Manual

See DISPLAY_CONTOUR_MINVALUE and DISPLAY_CONTOUR_MAXVALUE).
(Default=5)

DISPLAY_CONTOUR_LABEL Type : Bool Count : 0 or W
Indicate if the contour labels (value) are shown or not.
(Default=No)

DISPLAY_CONTOUR_LABEL_NUMBER Type : Int Count : 0 or W
Number of labels on each contour.
(Default=1)

DISPLAY_CONTOUR_MINVALUE Type : Flt Count : 0 or W
Minimum value to use to contour calculation.
Default values are the same as the color scale one.
(Default=min of data values)

DISPLAY_CONTOUR_MAXVALUE Type : Flt Count : 0 or W
Maximum value to use to contour calculation.
Default values are the same as the color scale one.
(Default=max of data values)

DISPLAY_SOLID_COLOR Type : Bool Count : 0 or W
Indicates if color layer of the field is shown or not.
(Default=Yes)

DISPLAY_COLOR Type : KW7 Count : 0 or W
Color name of the XY plot field.
(Default=randow color)

DISPLAY_POINTS Type : Bool Count : 0 or W
Indicates if points are displayed in a XY plot
(for the field).
(Default=No)

DISPLAY_LINES Type : Bool Count : 0 or W
Indicates if line is displayed in a XY plot (for the field).
(Default=Yes)

DISPLAY_POINTSIZE Type : Flt Count : 0 or W
Size of the points (XY plot, for the field).
(Default=1.0)

DISPLAY_LINEWIDTH Type : Flt Count : 0 or W
Width of the line (XY plot, for the field).
(Default=0.8)

DISPLAY_STIPPLEPATTERN Type : KW10 Count : 0 or W
Stipple pattern for the line (field) (XY plot).
(Default=Full)

DISPLAY_POINTGLYPH Type : KW8 Count : 0 or W
Glyph of the points (field) (XY plot).
(Default=Circle)

DISPLAY_POINTFILLED Type : Bool Count : 0 or W
Indicates if points are filled or not.
(Default=Yes)

ALIAS_NAME Type : Name Count : [0-n]=N
Name of an alias. An alias is a value which can be used
anywhere in another value of field by mean of
%{NAME} construct. Names are case sensitive.
If a name reference (%{XXX}) does not correspond to
an actually defined alias, the expansion is an empty
string.
(Default=None)

ALIAS_VALUE Type : Str Count : N
The value of the alias. ALIAS_VALUE keyword must have at
least as many occurences as the ALIAS_NAME one.

VERBOSE Type : Int Count : [0-1]
Amount of output: 0=None...5=Debug.
(Default=0)

 61

Basic Radar Altimetry Toolbox User Manual

=====================
Description of types:

Name String beginning with a letter and containing only letters,
digits and '_'

Bool Boolean
true if : YES/Y/TRUE/T/OUI/O/VRAI/V/1
false if : NO/N/FALSE/F/NON/N/FAUX/0

Flt Floating point number
Int Integer
Expr Combination of fields of the current record.

An expression which can contain function calls like
trigonometric, conversion, test...

Str String. Leading and trailing blanks are ignored.
KW5 Keywords: cosine, linear, sqrt (square root)
KW6 Keywords: In incresing resolution: crude, low, intermediate,

full
KW7 Keywords: AQUAMARINE, BLACK, BLUE, BLUE VIOLET, BROWN,

CADET BLUE, CORAL, CORNFLOWER BLUE, CYAN, DARK GREY,
DARK GREEN, DARK OLIVE GREEN, DARK ORCHID,
DARK SLATE BLUE, DARK SLATE GREY, DARK TURQUOISE,
DIM GREY, FIREBRICK, FOREST GREEN, GOLD, GOLDENROD,
GREY, GREEN, GREEN YELLOW, INDIAN RED, KHAKI,
LIGHT BLUE, LIGHT GREY, LIGHT STEEL BLUE, LIME GREEN,
MAGENTA, MAROON, MEDIUM AQUAMARINE, MEDIUM BLUE,
MEDIUM FOREST GREEN, MEDIUM GOLDENROD, MEDIUM ORCHID,
MEDIUM SEA GREEN, MEDIUM SLATE BLUE,
MEDIUM SPRING GREEN, MEDIUM TURQUOISE,
MEDIUM VIOLET RED, MIDNIGHT BLUE, NAVY, ORANGE,
ORANGE RED, ORCHID, PALE GREEN, PINK, PLUM, PURPLE,
RED, SALMON, SEA GREEN, SIENNA, SKY BLUE, SLATE BLUE,
SPRING GREEN, STEEL BLUE, TAN, THISTLE, TURQUOISE,
VIOLET, VIOLET RED, WHEAT, WHITE, YELLOW,
YELLOW GREEN.

KW8 Keywords: ARROW, CIRCLE, CROSS, DASH, DIAMOND, HOOKEDARROW,
SQUARE, THICKARROW, THICKCROSS, TRIANGLE

KW9 Keywords: 3D, Azimuthal Equidistant, Lambert Cylindrical,
Lambert Azimuthal, Mercator, Mollweide, Plate Caree,
Robinson

KW10 Keywords: DASHTINY, DASH, DASHDOT, DOT, FULL

 62

Basic Radar Altimetry Toolbox User Manual

Annex E.BRATHL-IDL API

The BRAT-IDL API consists of a handful of IDL 'named structures' and functions.

 ==================
 'named structures':
 ==================

BRATHL_DATEYMDHMSM
BRATHL_DATEDSM
BRATHL_DATESECOND
BRATHL_DATEJULIAN

BRATHL_DATEYMDHMSM named structure

This structure represents a YYYY-MM-DD HH:MN:SS:MS date structure :
YEAR
MONTH
DAY
HOUR
MINUTE
SECOND
MUSECOND

Example :

MyDate={BRATHL_DATEYMDHMSM}

MyDate.YEAR=2003
MyDate.MONTH=12
MyDate.DAY=5
MyDate.HOUR=18
MyDate.MINUTE=0
MyDate.SECOND=21
MyDate.MUSECOND=1069

BRATHL_DATEDSM named structure

This structure represents a day/seconds/microseconds date structure:
REFDATE reference date
DAYS numbers of days
SECONDS numbers of seconds
MUSECONDS numbers of microseconds

REFDATE is the reference date i.e :
 0: 1950-01-01 00:00:00.0
 1: 1958-01-01 00:00:00.0
 2: 1985-01-01 00:00:00.0
 3: 1990-01-01 00:00:00.0
 4: 2000-01-01 00:00:00.0

 63

Basic Radar Altimetry Toolbox User Manual

 5: user reference 1
 6: user reference 2

values of 5 and 6 allow the user to set two specifics reference date of his choice
(see BRATHL_SETREFUSER1 and BRATHL_SETREFUSER2 functions)

:
Example :

MyDate={BRATHL_DATEDSM}

MyDate.REFDATE=3
MyDate.DAYS=423
MyDate.SECONDS=5
MyDate.MUSECONDS=0

BRATHL_DATESECONDS named structure

This structure represents a decimal seconds date structure:
REFDATE reference date - see :BRATHL_DATEDSM
NBSECONDS decimal numbers of seconds (seconds.microseconds)
:
Example :

MyDate={BRATHL_DATESECONDS}

MyDate.REFDATE=0
MyDate.NBSECONDS=56236.0253

BRATHL_DATEJULIAN named structure

This structure represents a decimal julian date structure:
REFDATE reference date - see :BRATHL_DATEDSM
JULIAN decimal julian day
:
Example :

MyDate={BRATHL_DATESECONDS}

MyDate.REFDATE=0
MyDate.JULIAN=123.569

 ==================
 Functions
 ==================

==================
Date conversion/computation functions
==================
BRATHL_DAYOFYEAR

BRATHL_DIFFDSM
BRATHL_DIFFJULIAN
BRATHL_DIFFYMDHMSM

 64

Basic Radar Altimetry Toolbox User Manual

BRATHL_DSM2JULIAN
BRATHL_DSM2SECONDS
BRATHL_DSM2YMDHMSM

BRATHL_JULIAN2DSM
BRATHL_JULIAN2SECONDS
BRATHL_JULIAN2YMDHMSM

BRATHL_SECONDS2DSM
BRATHL_SECONDS2JULIAN
BRATHL_SECONDS2YMDHMSM

BRATHL_NOWYMDHMSM

BRATHL_YMDHMSM2DSM
BRATHL_YMDHMSM2JULIAN
BRATHL_YMDHMSM2SECONDS

BRATHL_SETREFUSER1
BRATHL_SETREFUSER2

==================
Cycle/date conversion functions
==================
BRATHL_CYCLE2YMDHMSM
BRATHL_YMDHMSM2CYCLE

==================
Data reading function
==================
BRATHL_READDATA

BRATHL_DAYOFYEAR

Retrieves the day of year of a date

BRATHL_DAYOFYEAR(BRATHL_DATEYMDHMSM dateYMDHMSM, ULONG dayOfYear)

[in] dateYMDHMSM : date
[out] dayOfYear : day of year of the date parameter

returns 0 or error code (see Date error codes in brathl general documentation)

Example :

MyDate={BRATHL_DATEYMDHMSM}

MyDate.YEAR=2003
MyDate.MONTH=12
MyDate.DAY=5
MyDate.HOUR=18
MyDate.MINUTE=0
MyDate.SECOND=21
MyDate.MUSECOND=1069

 65

Basic Radar Altimetry Toolbox User Manual

dayOfYear=0L
r = BRATHL_DAYOFYEAR(MyDate, dayOfYear)
print, r, dayOfYear

BRATHL_DIFFDSM

Computes the difference between two dates (date1 - date2)
the result is expressed in a decimal number of seconds

BRATHL_DIFFDSM(BRATHL_DATEDSM date1, BRATHL_DATEDSM date2, DOUBLE diff)

[in] date1
[in] date2
[out] diff : difference in seconds (date1 - date2)

return 0 or error code (see Date error codes in brathl general documentation)

Example:

d1={BRATHL_DATEDSM}
d1.REFDATE=3
d1.DAYS=423
d1.SECONDS=5
d1.MUSECONDS=0

d2={BRATHL_DATEDSM}
d2.REFDATE=2
d2.DAYS=36
d2.SECONDS=54
d2.MUSECONDS=2536

diff = 0.0D
r = BRATHL_DIFFYMDHMSM(d1, d2, diff)
print, r, diff

BRATHL_DIFFJULIAN

Computes the difference between two dates (date1 - date2)
the result is expressed in a decimal number of seconds

BRATHL_DIFFJULIAN(BRATHL_DIFFJULIAN date1, BRATHL_DIFFJULIAN date2, DOUBLE diff)

[in] date1
[in] date2
[out] diff : difference in seconds (date1 - date2)

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DIFFDSM

BRATHL_DIFFYMDHMSM

 66

Basic Radar Altimetry Toolbox User Manual

Computes the difference between two dates (date1 - date2)
the result is expressed in a decimal number of seconds

BRATHL_DIFFYMDHMSM(BRATHL_DIFFYMDHMSM date1, BRATHL_DIFFYMDHMSM date2,
DOUBLE diff)

[in] date1
[in] date2
[out] diff : difference in seconds (date1 - date2)

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DIFFDSM

BRATHL_DSM2JULIAN

Converts a days-seconds-microseconds date into a decimal julian date, according to refDate parameter

BRATHL_DSM2JULIAN(BRATHL_DATEDSM dateDSM, INT refDate, BRATHL_DATEJULIAN
dateJulian);

[in] dateDSM : date to convert
[in] refDate : date reference conversion
[out] dateJulian : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example :

dIn={BRATHL_DATEDSM}

dIn.REFDATE=3
dIn.DAYS=423
dIn.SECONDS=5
dIn.MUSECONDS=0

dOut={BRATHL_DATEJULIAN}

refDateDestination = 0

r = BRATHL_DSM2JULIAN(dIn, refDateDestination, dOut)
print, r, dOut.REFDATE, dOut.JULIAN

BRATHL_DSM2SECONDS

Converts a days-seconds-microseconds date into secnods, according to refDate parameter

BRATHL_DSM2SECONDS(BRATHL_DATEDSM dateDSM, INT refDate, BRATHL_DATESECOND
dateSeconds);

[in] dateDSM : date to convert
[in] refDate : date reference conversion
[out] dateSeconds : result of the conversion

 67

Basic Radar Altimetry Toolbox User Manual

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BRATHL_DSM2YMDHMSM

Converts a days-seconds-microseconds date into a year, month, day, hour, minute, second,
microsecond date

BRATHL_DSM2YMDHMSM(BRATHL_DATEDSM dateDSM, BRATHL_DATEYMDHMSM
dateYMDHMSM);

[in] dateDSM : date to convert
[in] refDate : date reference conversion
[out] dateYMDHMSM : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example:

dIn={BRATHL_DATEDSM}

dIn.REFDATE=3
dIn.DAYS=423
dIn.SECONDS=5
dIn.MUSECONDS=0

dOut={BRATHL_DATEYMDHMSM}

refDateDestination = 0

r = BRATHL_DSM2YMDHMSM(dIn, dOut)
print, r, dOut.YEAR, dOut.JULIAN, dOut.MONTH, dOut.DAY, dOut.HOUR, dOut.MINUTE,
dOut.SECOND, dOut.MUSECOND

BRATHL_JULIAN2DSM

Converts a decimal julian date into a days-seconds-microseconds date, according to refDate parameter

BRATHL_JULIAN2DSM(BRATHL_DATEJULIAN dateJulian, INT refDate, BRATHL_DATEDSM
dateDSM);

[in] dateJulian : date to convert
[in] refDate : date reference conversion
[out] dateDSM : result of conversion
return 0 or error code (see Date error codes in brathl general documentation)

BRATHL_DSM2YMDHMSM(BRATHL_DATEDSM dateDSM, BRATHL_DATEYMDHMSM
dateYMDHMSM);

[in] dateDSM : date to convert
[in] refDate : date reference conversion
[out] dateYMDHMSM : result of the conversion

 68

Basic Radar Altimetry Toolbox User Manual

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BRATHL_JULIAN2SECONDS

Converts a decimal julian date into seconds, according to refDate parameter

BRATHL_JULIAN2SECONDS(BRATHL_DATEJULIAN dateJulian, INT refDate,
BRATHL_DATESECOND dateSeconds)

[in] dateJulian : date to convert
[in] refDate : date reference conversion
[out] dateSeconds : result of conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BRATHL_JULIAN2YMDHMSM

Converts a decimal julian date into a year, month, day, hour, minute, second, microsecond date

BRATHL_JULIAN2YMDHMSM(BRATHL_DATEJULIAN dateJulian, BRATHL_DATEYMDHMSM
dateYMDHMSM);

[in] dateJulian : date to convert
[in] refDate : date reference conversion
[out] dateYMDHMSM : result of conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2YMDHMSM

BRATHL_SECONDS2DSM

Converts seconds into a days-seconds-microseconds date, according to refDate parameter

BRATHL_SECONDS2DSM(BRATHL_DATESECOND dateSeconds, INT refDate, BRATHL_DATEDSM
dateDSM);

[in] dateSeconds : date to convert
[in] refDate : date reference conversion
[out] dateDSM : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BRATHL_SECONDS2YMDHMSM

Converts seconds into a a decimal julian date, according to refDate parameter

 69

Basic Radar Altimetry Toolbox User Manual

BRATHL_SECONDS2YMDHMSM(BRATHL_DATESECOND dateSeconds, INT refDate,
BRATHL_DATEJULIAN dateJulian)

[in] dateSeconds : date to convert
[in] refDate : date reference conversion
[out] dateJulian : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BRATHL_NOWYMDHMSM

Gets the current date/time,

LIBRATHL_API int32_t brathl_NowYMDHMSM(brathl_DateYMDHMSM *dateYMDHMSM);

[out] dateYMDHMSM : current date/time

BRATHL_NOWYMDHMSM(BRATHL_DATEYMDHMSM dateYMDHMSM)

Example: see BRATHL_DSM2JULIAN

dOut={BRATHL_DATEYMDHMSM}
r = BRATHL_NOWYMDHMSM(dOut)
print, r, dOut.YEAR, dOut.JULIAN, dOut.MONTH, dOut.DAY, dOut.HOUR, dOut.MINUTE,
dOut.SECOND, dOut.MUSECOND

BRATHL_YMDHMSM2DSM

Converts a year, month, day, hour, minute, second, microsecond date into a days-seconds-
microseconds date,
according to refDate parameter

BRATHL_YMDHMSM2DSM(BRATHL_DATEYMDHMSM dateYMDHMSM, INT refDate,
BRATHL_DATEDSM dateDSM)

[in] dateYMDHMSM : date to convert
[in] refDate : date reference conversion
[out] dateDSM : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BRATHL_YMDHMSM2JULIAN

 70

Basic Radar Altimetry Toolbox User Manual

Converts a year, month, day, hour, minute, second, microsecond date into a decimal julian date,
according to refDate parameter

BRATHL_YMDHMSM2JULIAN(BRATHL_DATEYMDHMSM dateYMDHMSM, INT refDate,
BRATHL_DATEJULIAN dateJulian)

[in] dateYMDHMSM : date to convert
[in] refDate : date reference conversion
[out] dateJulian : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BRATHL_YMDHMSM2SECONDS

Converts a year, month, day, hour, minute, second, microsecond date into a seconds,
according to refDate parameter

BRATHL_YMDHMSM2SECONDS(BRATHL_DATEYMDHMSM dateYMDHMSM, INT refDate,
BRATHL_DATESECOND dateSeconds)

[in] dateYMDHMSM : date to convert
[in] refDate : date reference conversion
[out] dateSeconds : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BRATHL_SETREFUSER1
BRATHL_SETREFUSER2

Set user-defined reference dates

BRATHL_SETREFUSER1(STRING dateRef)

[in] dateRef : date to set - format: YYYY-MM-DD HH:MN:SS.MS

return 0 or error code (see Date error codes in brathl general documentation)

Example:

dateRefUser1 = '2001 01 12 14:57:23:1456'
dateRefUser2 = '2005 11 14'

 71

Basic Radar Altimetry Toolbox User Manual

brathl_setrefuser1(dateRefUser1)
brathl_setrefuser2(dateRefUser2)

MyDate={BRATHL_DATEDSM}

. Set user-defined ref. date 2001 01 12 14:57:23:1456
MyDate.REFDATE=5
MyDate.DAYS=423
MyDate.SECONDS=5
MyDate.MUSECONDS=0

AnotherDate={BRATHL_DATEDSM}

. Set user-defined ref. date 2005 11 14
AnotherDate.REFDATE=6
AnotherDate.DAYS=423
AnotherDate.SECONDS=5
AnotherDate.MUSECONDS=0

; ref. date for MyDate is now 2005 11 14
MyDate.REFDATE=6

brathl_setrefuser2('2005 05 18 13:08:00')
; ref. date for MyDate and AnotherDate is now 2005 05 18 13:08:00

BRATHL_CYCLE2YMDHMSM

Converts a cyle/pass into a date

BRATHL_CYCLE2YMDHMSM(INT mission, ULONG cycle, ULONG pass, BRATHL_DATEYMDHMSM
dateYMDHMSM)

[in] mission : mission type :
 0 : Topex/Poseidon
 1 : Jason-1
 2 : ERS2
 3 : Envisat
 4 : ERS1-A
 5 : ERS1-B

 6 : GFO

[in] cycle : number of cycle to convert
[in] pass : number of pass in the cycle to cinvert
[out] dateYMDHMSM : date corresponding to the cycle/pass

return 0 or error code (see Cycle/date conversion error codes in brathl general documentation)

Example:

cycle=120L
pass=153L
mission=3

 72

Basic Radar Altimetry Toolbox User Manual

dOut={BRATHL_DATEYMDHMSM}

r = BRATHL_CYCLE2YMDHMSM(mission, cycle, pass, dOut)
print, "result ", r

print, "mission ", mission , " cycle ", cycle, " pass ", pass
print, "Y", dOut.year, " M ", dOut.month, " D ", dOut.day, " H ", dOut.hour, " MN ", dOut.minute, " S ",
dOut.second, " MS ", dOut.muSecond

BRATHL_YMDHMSM2CYCLE

Converts a date into a cycle/pass

BRATHL_YMDHMSM2CYCLE(INT mission, BRATHL_DATEYMDHMSM dateYMDHMSM, ULONG
cycle, ULONG pass)

[in] mission : mission type :
 0 : Topex/Poseidon
 1 : Jason-1
 2 : ERS2
 3 : Envisat
 4 : ERS1-A
 5 : ERS1-B

 6 : GFO
[in] dateYMDHMSM : date to convert
[out] cycle : number of cycle
[out] pass : number of pass in the cycle

return 0 or error code (see Cycle/date conversion error codes in brathl general documentation)

Example:

cycle=0L
pass=0L
mission=1

dIn={BRATHL_DATEYMDHMSM}
dIn.YEAR=2003
dIn.MONTH=12
dIn.DAY=5
dIn.HOUR=18
dIn.MINUTE=0
dIn.SECOND=21
dIn.MUSECOND=1069

r = BRATHL_YMDHMSM2CYCLE(mission, dIn, cycle, pass)
print, "result ", r

print, "Y", dOut.year, " M ", dOut.month, " D ", dOut.day, " H ", dOut.hour, " MN ", dOut.minute, " S ",
dOut.second, " MS ", dOut.muSecond
print, "mission ", mission , " cycle ", cycle, " pass ", pass

 73

Basic Radar Altimetry Toolbox User Manual

BRATHL_READDATA

Read data from a set of files

Each measure for a data is a scalar value (a single number)

[in] fileNames : file name string (one file) or file names array
[in] recordName : Name of the fields record (for netCdf files recordName is 'data')
[in] selection : Expression involving data fields which has to be true to select returned data.
 (if empty string no selection is done (all data is selected)
[in] dataExpressions : Expression string (one expression) or expressions array applied to data fields to
build the wanted value.
[in] units : Wanted unit for each expression (string (one unit) or units array).
 (if empty string, no unit conversion is applied to the data of the corresponding

 expression. When a unit conversion has to be applied, the result
 of the expression is considered to be the base unit (SI). For
 example if the wanted unit is gram/l, the unit of the expression
 is supposed to be kilogram/m3 (internaly all data are converted
 to base unit of the actual fields unit which is coherent with
 the above assumption).

[in/out] results : Data read. Must be an array (dim = number of dataExpressions) to
 values to read.
[in] ignoreOutOfRange : Skip excess data.

 0=false, other = true
 Must be false if statistics is true.
[in] statistics : returns statistics on data instead of data themselves

 0=false, other = true
 If statistics is true, ignoreOutOfRange must be false.

 The returned values (5 values) for each
 expression are:
 - Count of valid data taken into account.

 Invalid data are those which are equal to the
 default/missing value

 - Mean of the valid data.
 - Standard deviation of the valid data
 - Minimum value of the valid data
 - Maximum value of the valid data
.

[in] defaultValue : value to use for default/missing values
 This is the value you want to indicate that a value

 is missing or invalid.

return 0 or error code.

Example:

; Set data input file
files=SINDGEN(3)
files[0]="/data/samples/JA1_GDR_2PaP124_001.CNES"
files[1]="/data/samples/JA1_GDR_2PaP124_002.CNES"
files[2]="/data/samples/JA1_GDR_2PaP124_003.CNES"

; Set record name
record="data"

; Set data selection - (set selection = "" to retrieve all data row)
selection="latitude > 20 && latitude < 30"

 74

Basic Radar Altimetry Toolbox User Manual

; Set expressions (here 2 expressions)
expr=SINDGEN(2)
; A compute expression
expr[0]="latitude + longitude"
; A single expression
expr[1]="swh_ku"

; Set units for each expression
units=SINDGEN(2)
; Convert unit to radians for expression 1 (latitude + longitude)
units[0]="radians"
; No unit conversion for expression 2 (swh_ku) - result will be in SI unit.
units[1]=""

; Create results array (dimension is number of expression)
dataResults=DINDGEN(2)

ignoreOutOfrange=0

; No statistics
statistics=0

; Default value is 0
defaultValue=0

; Call ReadData function

r = BRATHL_READDATA(files, record, selection, expr, units, dataResults, ignoreOutOfrange, statistics,
defaultValue)
print, "return code ", r

print, size(dataResults)

print, "NDIMS", size(dataResults, /N_DIMENSIONS)
print, "DIMS" , size(dataResults, /DIMENSIONS)
print, "NELTS", size(dataResults, /N_ELEMENTS)
print, "TYPE", size(dataResults, /TYPE)

dim = size(dataResults, /DIMENSIONS)

; Print data value on the screen
for i = 0, 1 do begin
 for j = 0,dim[1] - 1 do begin
 print, "Data", i ,j, data[i,j]
 endfor
endfor

 75

Basic Radar Altimetry Toolbox User Manual

Annex F.BRATHL-MATLAB API

The BRATHL-MATLAB API consists of just a handful of Matlab structures and functions.

 ==================
 structures
 ==================

BRATHL_DATEYMDHMSM = 0
BRATHL_DATEDSM = 1
BRATHL_DATESECOND = 2
BRATHL_DATEJULIAN = 3

To create a structure, use BRATHL_CREATESTRUCT (see description below)

BRATHL_DATEYMDHMSM structure

This structure represents a YYYY-MM-DD HH:MN:SS:MS date structure :
YEAR
MONTH
DAY
HOUR
MINUTE
SECOND
MUSECOND

Example :

MyDate=BRATHL_CREATESTRUCT(0)

MyDate.YEAR=2003
MyDate.MONTH=12
MyDate.DAY=5
MyDate.HOUR=18
MyDate.MINUTE=0
MyDate.SECOND=21
MyDate.MUSECOND=1069

BRATHL_DATEDSM structure

This structure represents a day/seconds/microseconds date structure:
REFDATE reference date
DAYS numbers of days
SECONDS numbers of seconds
MUSECONDS numbers of microseconds

REFDATE is the reference date i.e :
 0: 1950-01-01 00:00:00.0
 1: 1958-01-01 00:00:00.0
 2: 1985-01-01 00:00:00.0
 3: 1990-01-01 00:00:00.0
 4: 2000-01-01 00:00:00.0

 76

Basic Radar Altimetry Toolbox User Manual

 5: user reference 1
 6: user reference 2

values of 5 and 6 allow the user to set two specifics reference date of his choice
(see BRATHL_SETREFUSER1 and BRATHL_SETREFUSER2 functions)

:
Example :

MyDate=BRATHL_CREATESTRUCT(1)

MyDate.REFDATE=3
MyDate.DAYS=423
MyDate.SECONDS=5
MyDate.MUSECONDS=0

BRATHL_DATESECONDS structure

This structure represents a decimal seconds date structure:
REFDATE reference date - see :BRATHL_DATEDSM
NBSECONDS decimal numbers of seconds (seconds.microseconds)
:
Example :

MyDate=BRATHL_CREATESTRUCT(2)

MyDate.REFDATE=0
MyDate.NBSECONDS=56236.0253

BRATHL_DATEJULIAN structure

This structure represents a decimal julian date structure:
REFDATE reference date - see :BRATHL_DATEDSM
JULIAN decimal julian day
:
Example :

MyDate=BRATHL_CREATESTRUCT(3)

MyDate.REFDATE=0
MyDate.JULIAN=123.569

 ==================
 Functions
 ==================
==================
structure creation functions
==================
BRATHL_CREATESTRUCT

==================
Date conversion/computation functions
==================

 77

Basic Radar Altimetry Toolbox User Manual

BRATHL_DAYOFYEAR

BRATHL_DIFFDSM
BRATHL_DIFFJULIAN
BRATHL_DIFFYMDHMSM

BRATHL_DSM2JULIAN
BRATHL_DSM2SECONDS
BRATHL_DSM2YMDHMSM

BRATHL_JULIAN2DSM
BRATHL_JULIAN2SECONDS
BRATHL_JULIAN2YMDHMSM

BRATHL_SECONDS2DSM
BRATHL_SECONDS2JULIAN
BRATHL_SECONDS2YMDHMSM

BRATHL_NOWYMDHMSM

BRATHL_YMDHMSM2DSM
BRATHL_YMDHMSM2JULIAN
BRATHL_YMDHMSM2SECONDS

BRATHL_SETREFUSER1
BRATHL_SETREFUSER2

==================
Cycle/date conversion functions
==================

To convert cycle <-> date, these functions use an asci parameter file (ascii file) with records :

 field 1 : Name of the mission
 field 2 : Cycle reference
 field 3 : Pass reference
 field 4 : Reference date in decimal julian day

Each field has to be separated by, at least, a non-numeric character

The file can contained several records for a same mission.
Only the field with the greatest date is taken into account

You can add records.
You can add comments, commented lines start by '#' character.

If the file doesn't exist, default values are :

Name Cycle Pass Reference date

Jason-1 99 230 19987.9081795
Topex/Poseidon 442 230 19987.9127535
ERS2 66 598 18831.768334
ERS1-A 15 1 15636.938955
ERS1-B 42 108 16538.6732895
ENVISAT 30 579 19986.106016

BRATHL_CYCLE2YMDHMSM

 78

Basic Radar Altimetry Toolbox User Manual

BRATHL_YMDHMSM2CYCLE

BRATHL_DAYOFYEAR

Retrieves the day of year of a date

dayOfYear = BRATHL_DAYOFYEAR(BRATHL_DATEYMDHMSM dateYMDHMSM)

[in] dateYMDHMSM : date
[out] dayOfYear : day of year of the date parameter

Example :

MyDate={BRATHL_DATEYMDHMSM}

MyDate.YEAR=2003
MyDate.MONTH=12
MyDate.DAY=5
MyDate.HOUR=18
MyDate.MINUTE=0
MyDate.SECOND=21
MyDate.MUSECOND=1069

dayOfYear=0L
r = BRATHL_DAYOFYEAR(MyDate, dayOfYear)
print, r, dayOfYear

BRATHL_DIFFDSM

Computes the difference between two dates (date1 - date2)
the result is expressed in a decimal number of seconds

BRATHL_DIFFDSM(BRATHL_DATEDSM date1, BRATHL_DATEDSM date2, DOUBLE diff)

[in] date1
[in] date2
[out] diff : difference in seconds (date1 - date2)

return 0 or error code (see Date error codes in brathl general documentation)

Example:

d1={BRATHL_DATEDSM}
d1.REFDATE=3
d1.DAYS=423
d1.SECONDS=5
d1.MUSECONDS=0

d2={BRATHL_DATEDSM}
d2.REFDATE=2

 79

Basic Radar Altimetry Toolbox User Manual

d2.DAYS=36
d2.SECONDS=54
d2.MUSECONDS=2536

diff = 0.0D
r = BRATHL_DIFFYMDHMSM(d1, d2, diff)
print, r, diff

BRATHL_DIFFJULIAN

Computes the difference between two dates (date1 - date2)
the result is expressed in a decimal number of seconds

BRATHL_DIFFJULIAN(BRATHL_DIFFJULIAN date1, BRATHL_DIFFJULIAN date2, DOUBLE diff)

[in] date1
[in] date2
[out] diff : difference in seconds (date1 - date2)

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DIFFDSM

BRATHL_DIFFYMDHMSM

Computes the difference between two dates (date1 - date2)
the result is expressed in a decimal number of seconds

BRATHL_DIFFYMDHMSM(BRATHL_DIFFYMDHMSM date1, BRATHL_DIFFYMDHMSM date2,
DOUBLE diff)

[in] date1
[in] date2
[out] diff : difference in seconds (date1 - date2)

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DIFFDSM

BRATHL_DSM2JULIAN

Converts a days-seconds-microseconds date into a decimal julian date, according to refDate parameter

BRATHL_DSM2JULIAN(BRATHL_DATEDSM dateDSM, INT refDate, BRATHL_DATEJULIAN
dateJulian);

[in] dateDSM : date to convert
[in] refDate : date reference conversion
[out] dateJulian : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

 80

Basic Radar Altimetry Toolbox User Manual

Example :

dIn={BRATHL_DATEDSM}

dIn.REFDATE=3
dIn.DAYS=423
dIn.SECONDS=5
dIn.MUSECONDS=0

dOut={BRATHL_DATEJULIAN}

refDateDestination = 0

r = BRATHL_DSM2JULIAN(dIn, refDateDestination, dOut)
print, r, dOut.REFDATE, dOut.JULIAN

BRATHL_DSM2SECONDS

Converts a days-seconds-microseconds date into secnods, according to refDate parameter

BRATHL_DSM2SECONDS(BRATHL_DATEDSM dateDSM, INT refDate, BRATHL_DATESECOND
dateSeconds);

[in] dateDSM : date to convert
[in] refDate : date reference conversion
[out] dateSeconds : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BRATHL_DSM2YMDHMSM

Converts a days-seconds-microseconds date into a year, month, day, hour, minute, second,
microsecond date

BRATHL_DSM2YMDHMSM(BRATHL_DATEDSM dateDSM, BRATHL_DATEYMDHMSM
dateYMDHMSM);

[in] dateDSM : date to convert
[in] refDate : date reference conversion
[out] dateYMDHMSM : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example:

dIn={BRATHL_DATEDSM}

dIn.REFDATE=3
dIn.DAYS=423
dIn.SECONDS=5
dIn.MUSECONDS=0

 81

Basic Radar Altimetry Toolbox User Manual

dOut={BRATHL_DATEYMDHMSM}

refDateDestination = 0

r = BRATHL_DSM2YMDHMSM(dIn, dOut)
print, r, dOut.YEAR, dOut.JULIAN, dOut.MONTH, dOut.DAY, dOut.HOUR, dOut.MINUTE,
dOut.SECOND, dOut.MUSECOND

BRATHL_JULIAN2DSM

Converts a decimal julian date into a days-seconds-microseconds date, according to refDate parameter

BRATHL_JULIAN2DSM(BRATHL_DATEJULIAN dateJulian, INT refDate, BRATHL_DATEDSM
dateDSM);

[in] dateJulian : date to convert
[in] refDate : date reference conversion
[out] dateDSM : result of conversion
return 0 or error code (see Date error codes in brathl general documentation)

BRATHL_DSM2YMDHMSM(BRATHL_DATEDSM dateDSM, BRATHL_DATEYMDHMSM
dateYMDHMSM);

[in] dateDSM : date to convert
[in] refDate : date reference conversion
[out] dateYMDHMSM : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BRATHL_JULIAN2SECONDS

Converts a decimal julian date into seconds, according to refDate parameter

BRATHL_JULIAN2SECONDS(BRATHL_DATEJULIAN dateJulian, INT refDate,
BRATHL_DATESECOND dateSeconds)

[in] dateJulian : date to convert
[in] refDate : date reference conversion
[out] dateSeconds : result of conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BRATHL_JULIAN2YMDHMSM

Converts a decimal julian date into a year, month, day, hour, minute, second, microsecond date

BRATHL_JULIAN2YMDHMSM(BRATHL_DATEJULIAN dateJulian, BRATHL_DATEYMDHMSM
dateYMDHMSM);

[in] dateJulian : date to convert

 82

Basic Radar Altimetry Toolbox User Manual

[in] refDate : date reference conversion
[out] dateYMDHMSM : result of conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2YMDHMSM

BRATHL_SECONDS2DSM

Converts seconds into a days-seconds-microseconds date, according to refDate parameter

BRATHL_SECONDS2DSM(BRATHL_DATESECOND dateSeconds, INT refDate, BRATHL_DATEDSM
dateDSM);

[in] dateSeconds : date to convert
[in] refDate : date reference conversion
[out] dateDSM : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BRATHL_SECONDS2JULIAN

Converts seconds into a decimal julian date, according to refDate parameter

BRATHL_SECONDS2JULIAN(BRATHL_DATESECOND dateSeconds, INT refDate,
BRATHL_DATEJULIAN dateJulian)

[in] dateSeconds : date to convert
[in] refDate : date reference conversion
[out] dateJulian : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BRATHL_SECONDS2YMDHMSM

Converts seconds into a a decimal julian date, according to refDate parameter

BRATHL_SECONDS2YMDHMSM(BRATHL_DATESECOND dateSeconds, INT refDate,
BRATHL_DATEJULIAN dateJulian)

[in] dateSeconds : date to convert
[in] refDate : date reference conversion
[out] dateJulian : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

 83

Basic Radar Altimetry Toolbox User Manual

BRATHL_NOWYMDHMSM

Gets the current date/time,

LIBRATHL_API int32_t brathl_NowYMDHMSM(brathl_DateYMDHMSM *dateYMDHMSM);

[out] dateYMDHMSM : current date/time

BRATHL_NOWYMDHMSM(BRATHL_DATEYMDHMSM dateYMDHMSM)

Example: see BRATHL_DSM2JULIAN

dOut={BRATHL_DATEYMDHMSM}
r = BRATHL_NOWYMDHMSM(dOut)
print, r, dOut.YEAR, dOut.JULIAN, dOut.MONTH, dOut.DAY, dOut.HOUR, dOut.MINUTE,
dOut.SECOND, dOut.MUSECOND

BRATHL_YMDHMSM2DSM

Converts a year, month, day, hour, minute, second, microsecond date into a days-seconds-
microseconds date,
according to refDate parameter

BRATHL_YMDHMSM2DSM(BRATHL_DATEYMDHMSM dateYMDHMSM, INT refDate,
BRATHL_DATEDSM dateDSM)

[in] dateYMDHMSM : date to convert
[in] refDate : date reference conversion
[out] dateDSM : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BRATHL_YMDHMSM2JULIAN

Converts a year, month, day, hour, minute, second, microsecond date into a decimal julian date,
according to refDate parameter

BRATHL_YMDHMSM2JULIAN(BRATHL_DATEYMDHMSM dateYMDHMSM, INT refDate,
BRATHL_DATEJULIAN dateJulian)

[in] dateYMDHMSM : date to convert
[in] refDate : date reference conversion
[out] dateJulian : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

 84

Basic Radar Altimetry Toolbox User Manual

Example: see BRATHL_DSM2JULIAN

BRATHL_YMDHMSM2SECONDS

Converts a year, month, day, hour, minute, second, microsecond date into a seconds,
according to refDate parameter

BRATHL_YMDHMSM2SECONDS(BRATHL_DATEYMDHMSM dateYMDHMSM, INT refDate,
BRATHL_DATESECOND dateSeconds)

[in] dateYMDHMSM : date to convert
[in] refDate : date reference conversion
[out] dateSeconds : result of the conversion

return 0 or error code (see Date error codes in brathl general documentation)

Example: see BRATHL_DSM2JULIAN

BRATHL_SETREFUSER1
BRATHL_SETREFUSER2

Set user-defined reference dates

BRATHL_SETREFUSER1(STRING dateRef)

[in] dateRef : date to set - format: YYYY-MM-DD HH:MN:SS.MS

return 0 or error code (see Date error codes in brathl general documentation)

Example:

dateRefUser1 = '2001 01 12 14:57:23:1456'
dateRefUser2 = '2005 11 14'

brathl_setrefuser1(dateRefUser1)
brathl_setrefuser2(dateRefUser2)

MyDate={BRATHL_DATEDSM}

. Set user-defined ref. date 2001 01 12 14:57:23:1456
MyDate.REFDATE=5
MyDate.DAYS=423
MyDate.SECONDS=5
MyDate.MUSECONDS=0

AnotherDate={BRATHL_DATEDSM}

 85

Basic Radar Altimetry Toolbox User Manual

. Set user-defined ref. date 2005 11 14
AnotherDate.REFDATE=6
AnotherDate.DAYS=423
AnotherDate.SECONDS=5
AnotherDate.MUSECONDS=0

; ref. date for MyDate is now 2005 11 14
MyDate.REFDATE=6

brathl_setrefuser2('2005 05 18 13:08:00')
; ref. date for MyDate and AnotherDate is now 2005 05 18 13:08:00

BRATHL_CYCLE2YMDHMSM

Converts a cyle/pass into a date

BRATHL_CYCLE2YMDHMSM(INT mission, ULONG cycle, ULONG pass, BRATHL_DATEYMDHMSM
dateYMDHMSM)

[in] mission : mission type :
 0 : Topex/Poseidon
 1 : Jason-1
 2 : ERS2
 3 : Envisat
 4 : ERS1-A
 5 : ERS1-B

 6 : GFO

[in] cycle : number of cycle to convert
[in] pass : number of pass in the cycle to cinvert
[out] dateYMDHMSM : date corresponding to the cycle/pass

return 0 or error code (see Cycle/date conversion error codes in brathl general documentation)

Example:

cycle=120L
pass=153L
mission=3

dOut={BRATHL_DATEYMDHMSM}

r = BRATHL_CYCLE2YMDHMSM(mission, cycle, pass, dOut)
print, "result ", r

print, "mission ", mission , " cycle ", cycle, " pass ", pass
print, "Y", dOut.year, " M ", dOut.month, " D ", dOut.day, " H ", dOut.hour, " MN ", dOut.minute, " S ",
dOut.second, " MS ", dOut.muSecond

BRATHL_YMDHMSM2CYCLE

Converts a date into a cycle/pass

 86

Basic Radar Altimetry Toolbox User Manual

BRATHL_YMDHMSM2CYCLE(INT mission, BRATHL_DATEYMDHMSM dateYMDHMSM, ULONG
cycle, ULONG pass)

[in] mission : mission type :
 0 : Topex/Poseidon
 1 : Jason-1
 2 : ERS2
 3 : Envisat
 4 : ERS1-A
 5 : ERS1-B

 6 : GFO
[in] dateYMDHMSM : date to convert
[out] cycle : number of cycle
[out] pass : number of pass in the cycle

return 0 or error code (see Cycle/date conversion error codes in brathl general documentation)

Example:

cycle=0L
pass=0L
mission=1

dIn={BRATHL_DATEYMDHMSM}
dIn.YEAR=2003
dIn.MONTH=12
dIn.DAY=5
dIn.HOUR=18
dIn.MINUTE=0
dIn.SECOND=21
dIn.MUSECOND=1069

r = BRATHL_YMDHMSM2CYCLE(mission, dIn, cycle, pass)
print, "result ", r

print, "Y", dOut.year, " M ", dOut.month, " D ", dOut.day, " H ", dOut.hour, " MN ", dOut.minute, " S ",
dOut.second, " MS ", dOut.muSecond
print, "mission ", mission , " cycle ", cycle, " pass ", pass

 87

Basic Radar Altimetry Toolbox User Manual

Annex G.BRATHL-Fortran API
The BRATHL-C API consists of just a handful of Fortran functions.

Below is the list of Fortran APIs functions.

A description of each function is detailed in the BRATHL documentation in html or latex format (search
for refman-html or refman-latext sub-directories in your BRATHL directories installation). Note: When
installing BRAT Toolbox, you have to selected 'Documentations' component.

==================
Date conversion/computation functions
==================

brathl_DayOfYear

brathl_DiffDSM
brathl_DiffJULIAN
brathl_DiffYMDHMSM

brathl_DSM2Julian
brathl_DSM2Seconds
brathl_DSM2YMDHMSM

brathl_JULIAN2DSM
brathl_JULIAN2Seconds
brathl_JULIAN2YMDHMSM

brathl_SECONDS2DSM
brathl_SECONDS2Julian
brathl_SECONDS2YMDHMSM

brathl_NowYMDHMSM

brathl_YMDHMSM2DSM
brathl_YMDHMSM2Julian
brathl_YMDHMSM2Seconds

Date conversion/computation example:

 PROGRAM TESTDATE_F

 IMPLICIT NONE

 INCLUDE "brathlf.inc"
 INTEGER IREFDATESRC
 DOUBLE PRECISION ISECONDS
 INTEGER IREFDATEDEST
 INTEGER ODAYS
 INTEGER OSECONDS
 INTEGER OMUSECONDS

 INTEGER Y
 INTEGER M
 INTEGER D
 INTEGER H
 INTEGER MN
 INTEGER SEC
 INTEGER MS

 INTEGER RESULT
 CHARACTER*128 ERRSTR
 CHARACTER*28 REFUSER

 88

Basic Radar Altimetry Toolbox User Manual

 INTEGER TMP

 REFUSER = '1952 02 18'
 CALL BRATHLF_SETREFUSER1(REFUSER)
 IREFDATESRC = REF20000101
C IREFDATEDEST = REF19500101
 IREFDATEDEST = REFUSER1

 ISECONDS = 86460.16936D0
 ODAYS = 0
 OSECONDS = 0
 OMUSECONDS = 0

 RESULT = BRATHLF_SECONDS2DSM(IREFDATESRC, ISECONDS, IREFDATEDEST,
& ODAYS, OSECONDS, OMUSECONDS)

 IF (RESULT .NE. BRATHL_SUCCESS) THEN
 CALL BRATHLF_ERRNO2STRING(RESULT, ERRSTR)
 WRITE(*,*) 'ERROR: ' // ERRSTR
 STOP
 END IF

 WRITE(*,*) ' IREFDATESRC:', IREFDATESRC,' ISECONDS:', ISECONDS,
& ' IREFDATEDEST:', IREFDATEDEST, ' ODAYS:', ODAYS, ' OSECONDS:',
& OSECONDS, ' OMUSECONDS:', OMUSECONDS
C --

 RESULT = BRATHLF_DSM2SECONDS(IREFDATESRC, ODAYS, OSECONDS,
& OMUSECONDS, IREFDATEDEST, ISECONDS)

 IF (RESULT .NE. BRATHL_SUCCESS) THEN
 CALL BRATHLF_ERRNO2STRING(RESULT, ERRSTR)
 WRITE(*,*) 'ERROR: ' // ERRSTR
 STOP
 END IF

 WRITE(*,*) ' IREFDATESRC:', IREFDATESRC,' ISECONDS:', ISECONDS,
& ' IREFDATEDEST:', IREFDATEDEST, ' ODAYS:', ODAYS, ' OSECONDS:',
& OSECONDS, ' OMUSECONDS:', OMUSECONDS

C --
 RESULT = brathlf_DSM2YMDHMSM(IREFDATESRC, ODAYS, OSECONDS,
& OMUSECONDS, Y, M, D, H, MN, SEC, MS)

 IF (RESULT .NE. BRATHL_SUCCESS) THEN
 CALL BRATHLF_ERRNO2STRING(RESULT, ERRSTR)
 WRITE(*,*) 'ERROR: ' // ERRSTR
 STOP
 END IF

 WRITE(*,*) ' IREFDATESRC:', IREFDATESRC,' Y:', Y,
& ' M:', M, ' D:', D, ' H:', H,' MN:', MN,' SEC:', SEC,' MS:', MS,
& ' ODAYS:', ODAYS, ' OSECONDS:',
& OSECONDS, ' OMUSECONDS:', OMUSECONDS

C --

 RESULT = brathlf_YMDHMSM2DSM(Y, M, D, H, MN, SEC, MS,
& IREFDATEDEST, ODAYS, OSECONDS, OMUSECONDS,)

 IF (RESULT .NE. BRATHL_SUCCESS) THEN
 CALL BRATHLF_ERRNO2STRING(RESULT, ERRSTR)
 WRITE(*,*) 'ERROR: ' // ERRSTR
 STOP
 END IF

 WRITE(*,*) ' IREFDATESRC:', IREFDATESRC,' Y:', Y,
& ' M:', M, ' D:', D, ' H:', H,' MN:', MN,' SEC:', SEC,' MS:', MS,
& ' ODAYS:', ODAYS, ' OSECONDS:',
& OSECONDS, ' OMUSECONDS:', OMUSECONDS

C --

 END
==================
Cycle/date conversion functions
==================

 89

Basic Radar Altimetry Toolbox User Manual

To convert cycle <-> date, these functions use an asci parameter file (ascii file) with records:

 field 1 : Name of the mission
 field 2 : Cycle reference
 field 3 : Pass reference
 field 4 : Reference date in decimal julian day

Each field has to be separated by, at least, a non-numeric character

The file can contained several records for a same mission.
Only the field with the greatest date is taken into account

You can add records.
You can add comments, commented lines start by '#' character.

If the file doesn't exist, default values are :

Name Cycle Pass Reference date

Jason-1 99 230 19987.9081795
Topex/Poseidon 442 230 19987.9127535
ERS2 66 598 18831.768334
ERS1-A 15 1 15636.938955
ERS1-B 42 108 16538.6732895
ENVISAT 30 579 19986.106016

brathl_Cycle2YMDHMSM
brathl_YMDHMSM2Cycle

Cycle/date conversion example:

 PROGRAM TESTCYCLE_F

 IMPLICIT NONE

 INCLUDE "brathlf.inc"
 INTEGER C
 INTEGER P
 INTEGER MISSION

 INTEGER Y
 INTEGER M
 INTEGER D
 INTEGER H
 INTEGER MN
 INTEGER SEC
 INTEGER MS

 INTEGER RESULT
 CHARACTER*128 ERRSTR

 MISSION = ENVISAT

 C = 120
 P = 153

 RESULT = BRATHLF_CYCLE2YMDHMSM(MISSION, C, P,
& Y, M, D, H, MN, SEC, MS)

 IF (RESULT .NE. BRATHL_SUCCESS) THEN
 CALL BRATHLF_ERRNO2STRING(RESULT, ERRSTR)
 WRITE(*,*) 'ERROR: ' // ERRSTR
 STOP
 END IF

 90

Basic Radar Altimetry Toolbox User Manual

 WRITE(*,*) ' MISSION:', MISSION,' CYCLE:', C,
& ' PASS:', P,
& ' Y:', Y,
& ' M:', M, ' D:', D, ' H:', H,' MN:', MN,' SEC:', SEC,' MS:', MS
C --

 RESULT = BRATHLF_YMDHMSM2CYCLE(MISSION,
& Y, M, D, H, MN, SEC, MS, C, P)

 IF (RESULT .NE. BRATHL_SUCCESS) THEN
 CALL BRATHLF_ERRNO2STRING(RESULT, ERRSTR)
 WRITE(*,*) 'ERROR: ' // ERRSTR
 STOP
 END IF

 WRITE(*,*) ' MISSION:', MISSION,' CYCLE:', C,
& ' PASS:', P,
& ' Y:', Y,
& ' M:', M, ' D:', D, ' H:', H,' MN:', MN,' SEC:', SEC,' MS:', MS

 END

==================
Data reading function
==================

brathl_ReadData

Example:

PROGRAM P
IMPLICIT NONE
CHARACTER*(100) NAMES(10)
CHARACTER*(10) Record
CHARACTER*(120) Selection
CHARACTER*(200) Expressions(20)
CHARACTER*(20) Units(20)
REAL*8 Result(1000,20)
LOGICAL*4 Ignore
LOGICAL*4 Statistics
REAL*8 Default

INTEGER*4 NbValues
INTEGER*4 NbResults
INTEGER*4 ReturnCode

INCLUDE "brathlf.inc"

NAMES(1) = 'JA1_GDR_2PaP124_001.CNES'
NAMES(2) = 'JA1_GDR_2PaP124_002.CNES'
NAMES(3) = 'JA1_GDR_2PaP124_003.CNES'
Record = 'data'
Selection = 'latitude > 20'
Expressions(1) = 'latitude + longitude'
Units(1) = 'radians'
Expressions(2) = 'swh_ku'
Units(2) = 'm'
NbValues = 1000
NbResults = -1
Ignore = .false.
Statistics = .false.
Default = 1.0E100

ReturnCode = brathlf_ReadData(3,
 $ NAMES,
 $ Record,
 $ Selection,
 $ 2,
 $ Expressions,
 $ Units,
 $ Result,
 $ NbValues,

 91

Basic Radar Altimetry Toolbox User Manual

 $ NbResults,
 $ Ignore,
 $ Statistics,
 $ Default)

print *, NbResults
print *, ReturnCode
END

 92

Basic Radar Altimetry Toolbox User Manual

Annex H.BRATHL-C API
The BRATHL-C API consists of just a handful of C structures and functions.

Below is the list of C APIs functions.

A description of each function is detailed in the BRATHL documentation in html or latex format (search
for refman-html or refman-latext sub-directories in your BRATHL directories installation). Note: When
installing BRAT Toolbox, you have to selected 'Documentations' component.

==================
Date conversion/computation functions
==================

brathl_DayOfYear

brathl_DiffDSM
brathl_DiffJULIAN
brathl_DiffYMDHMSM

brathl_DSM2Julian
brathl_DSM2Seconds
brathl_DSM2YMDHMSM

brathl_JULIAN2DSM
brathl_JULIAN2Seconds
brathl_JULIAN2YMDHMSM

brathl_SECONDS2DSM
brathl_SECONDS2Julian
brathl_SECONDS2YMDHMSM

brathl_NowYMDHMSM

brathl_YMDHMSM2DSM
brathl_YMDHMSM2Julian
brathl_YMDHMSM2Seconds

Date conversion/computation example :

#include <brathl.h>
#include <brathl_error.h>

void PrintfDateDSM(brathl_DateDSM *d);
void PrintfDateSecond(brathl_DateSecond *d);
void PrintfDateJulian(brathl_DateJulian *d);
void PrintfDateYMDHMSM(brathl_DateYMDHMSM *d);

int main (int argc, char *argv[])
{
 double diff = 0;
 brathl_DateSecond dateSeconds;
 brathl_DateDSM dateDSM;
 brathl_DateDSM dateDSM2;
 brathl_DateJulian dateJulian;
 brathl_DateJulian dateJulian2;
 brathl_DateYMDHMSM dateYMDHMSM;
 brathl_DateYMDHMSM dateYMDHMSM2;
 brathl_refDate refDate = REF19500101;
 brathl_refDate refDateDest = REF19500101;

 93

Basic Radar Altimetry Toolbox User Manual

 char Buff[1024];

 memset(brathl_refDateUser1, '\0', BRATHL_REF_DATE_USER_LEN - 1);

 memset(&dateSeconds, '\0', sizeof(dateSeconds));
 memset(&dateDSM, '\0', sizeof(dateDSM));
 memset(&dateDSM2, '\0', sizeof(dateDSM2));
 memset(&dateJulian, '\0', sizeof(dateJulian));
 memset(&dateJulian2, '\0', sizeof(dateJulian2));
 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));
 memset(&dateYMDHMSM2, '\0', sizeof(dateYMDHMSM2));

 puts ("saisir Référentiel Source : \n"
 "1 --> 1950\n"
 "2 --> 1958\n"
 "3 --> 1990\n"
 "4 --> 2000\n"
 "5 --> user 1\n"
 "x Exit\n");

 c = getchar();
 getchar();

 switch (c)
 {
 case 'X' :
 case 'x' :
 return 0;
 case '1' : refDate = REF19500101; break;
 case '2' : refDate = REF19580101; break;
 case '3' : refDate = REF19900101; break;
 case '4' : refDate = REF20000101; break;
 case '5' :
 refDate = REFUSER1;
 puts ("saisir la date du réfétentiel au format YYYY MM DD hh:mn:s:ms ");
 gets (Buff);
 strncpy (brathl_refDateUser1, Buff, BRATHL_REF_DATE_USER_LEN - 1);

 break;
 default : refDate = REF19500101;
 }

 puts ("saisir Référentiel Destination : \n"
 "1 --> 1950\n"
 "2 --> 1958\n"
 "3 --> 1990\n"
 "4 --> 2000\n"
 "5 --> user 1\n"
 "x Exit\n");

 c = getchar();
 getchar();

 switch (c)
 {
 case 'X' :
 case 'x' :
 return 0;
 case '1' : refDateDest = REF19500101; break;
 case '2' : refDateDest = REF19580101; break;
 case '3' : refDateDest = REF19900101; break;
 case '4' : refDateDest = REF20000101; break;
 case '5' :
 refDateDest = REFUSER1;
 puts ("saisir la date du réfétentiel au format YYYY MM DD hh:mn:s:ms ");
 //fgets (brathl_refDateUser1, strlen(refDateUser), stdin);
 gets (Buff);
 strncpy (brathl_refDateUser1, Buff, BRATHL_REF_DATE_USER_LEN - 1);

 94

Basic Radar Altimetry Toolbox User Manual

 break;
 default : refDateDest = REF19500101;
 }

 printf("ref. dest %d %s\n", refDateDest, brathl_refDateUser1);

 do
 {
 puts ("\nConversion : \n"
 "1 - Seconds --> DSM\n"
 "2 - DSM -->Seconds\n"
 "3 - Julian --> DSM\n"
 "4 - DSM -->Julian\n"
 "5 - YMDHMSM --> DSM\n"
 "6 - DSM -->YMDHMSM\n"
 "7 - Seconds --> Julian\n"
 "8 - Julian --> Seconds\n"
 "9 - Seconds --> YMDHMSM\n"
 "A - YMDHMSM --> Seconds\n"
 "B - Julian --> YMDHMSM\n"
 "C - YMDHMSM -->Julian\n"
 "D - diff Date1 - Date2 (YMDHMSM)\n"
 "E - diff Date1 (ref. src) - Date2 (ref. dest) (DSM)\n"
 "F - diff Date1 (ref. src) - Date2 (ref. dest) (Julian)\n"
 "N - Now --> YMDHMSM\n"
 "Q - YMDHMSM --> Quantieme\n"
 "x Exit\n");

 c = getchar();
 getchar();

 switch (c)
 {
 case '1' : // Seconds --> DSM
 memset(&dateSeconds, '\0', sizeof(dateSeconds));
 memset(&dateDSM, '\0', sizeof(dateDSM));

dateSeconds.refDate = refDate;

puts ("nbSeconds :");
 gets (Buff);
 sscanf(Buff, "%lf", &dateSeconds.nbSeconds);

result = brathl_Seconds2DSM(&dateSeconds, refDateDest, &dateDSM);
printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateSecond(&dateSeconds);
 PrintfDateDSM(&dateDSM);

break;
 case '2' : // DSM -->Seconds
 memset(&dateSeconds, '\0', sizeof(dateSeconds));
 memset(&dateDSM, '\0', sizeof(dateDSM));

dateDSM.refDate = refDate;

puts ("D S M :");
 gets (Buff);
 sscanf(Buff, "%ld%*c%ld%*c%ld ",

 &dateDSM.days,
 &dateDSM.seconds,
 &dateDSM.muSeconds);

 result = brathl_DSM2Seconds(&dateDSM, refDateDest, &dateSeconds);

printf("result %d %s\n", result, brathl_Errno2String(result));
 PrintfDateSecond(&dateSeconds);
 PrintfDateDSM(&dateDSM);

break;

 case '3' : // Julian --> DSM
 memset(&dateDSM, '\0', sizeof(dateDSM));

 95

Basic Radar Altimetry Toolbox User Manual

 memset(&dateJulian, '\0', sizeof(dateJulian));

dateJulian.refDate = refDate;

puts ("julian :");
 gets (Buff);
 sscanf(Buff, "%lf", &dateJulian.julian);

result = brathl_Julian2DSM(&dateJulian, refDateDest, &dateDSM);
printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateJulian(&dateJulian);
 PrintfDateDSM(&dateDSM);

break;

 case '4' : // DSM -->Julian
 memset(&dateJulian, '\0', sizeof(dateJulian));
 memset(&dateDSM, '\0', sizeof(dateDSM));

dateDSM.refDate = refDate;

puts ("D S M :");
 gets (Buff);
 sscanf(Buff, "%ld%*c%ld%*c%ld ",

 &dateDSM.days,
 &dateDSM.seconds,
 &dateDSM.muSeconds);

 result = brathl_DSM2Julian(&dateDSM, refDateDest, &dateJulian);

printf("result %d %s\n", result, brathl_Errno2String(result));
 PrintfDateJulian(&dateJulian);
 PrintfDateDSM(&dateDSM);

break;

 case '5' : // YMDHMSM --> DSM
 memset(&dateDSM, '\0', sizeof(dateDSM));
 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));

puts ("YYYY MM DD hh:mn:s:ms :");
 gets (Buff);
 sscanf(Buff, "%4d%*c%2d%*c%2d%*c"

 "%2d%*c%2d%*c%2d%*c%6d",
 &dateYMDHMSM.year, &dateYMDHMSM.month, &dateYMDHMSM.day,

 &dateYMDHMSM.hour, &dateYMDHMSM.minute, &dateYMDHMSM.second,
&dateYMDHMSM.muSecond);

result = brathl_YMDHMSM2DSM(&dateYMDHMSM, refDateDest, &dateDSM);
printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateYMDHMSM(&dateYMDHMSM);
 PrintfDateDSM(&dateDSM);

break;

 case '6' : // DSM -->YMDHMSM
 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));
 memset(&dateDSM, '\0', sizeof(dateDSM));

puts ("D S M :");
 gets (Buff);
 sscanf(Buff, "%ld%*c%ld%*c%ld ",

 &dateDSM.days,
 &dateDSM.seconds,
 &dateDSM.muSeconds);

 result = brathl_DSM2YMDHMSM(&dateDSM, &dateYMDHMSM);

printf("result %d %s\n", result, brathl_Errno2String(result));
 PrintfDateYMDHMSM(&dateYMDHMSM);
 PrintfDateDSM(&dateDSM);

break;
 case '7' : // Seconds --> Julian

 96

Basic Radar Altimetry Toolbox User Manual

 memset(&dateSeconds, '\0', sizeof(dateSeconds));
 memset(&dateJulian, '\0', sizeof(dateJulian));

dateSeconds.refDate = refDate;

puts ("nbSeconds :");
 gets (Buff);
 sscanf(Buff, "%lf", &dateSeconds.nbSeconds);

result = brathl_Seconds2Julian(&dateSeconds, refDateDest, &dateJulian);
printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateSecond(&dateSeconds);
 PrintfDateJulian(&dateJulian);

break;

 case '8' : // Julian --> Seconds
 memset(&dateSeconds, '\0', sizeof(dateSeconds));
 memset(&dateJulian, '\0', sizeof(dateJulian));

dateJulian.refDate = refDate;

puts ("julian :");
 gets (Buff);
 sscanf(Buff, "%lf", &dateJulian.julian);

result = brathl_Julian2Seconds(&dateJulian, refDateDest, &dateSeconds);
printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateSecond(&dateSeconds);
 PrintfDateJulian(&dateJulian);

break;

 case '9' : // Seconds --> YMDHMSM
 memset(&dateSeconds, '\0', sizeof(dateSeconds));
 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));

dateSeconds.refDate = refDate;

puts ("nbSeconds :");
 gets (Buff);
 sscanf(Buff, "%lf", &dateSeconds.nbSeconds);

result = brathl_Seconds2YMDHMSM(&dateSeconds, &dateYMDHMSM);
printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateSecond(&dateSeconds);
 PrintfDateYMDHMSM(&dateYMDHMSM);

break;

 case 'A' : // YMDHMSM --> Seconds
 case 'a' : // YMDHMSM --> Seconds
 memset(&dateSeconds, '\0', sizeof(dateSeconds));
 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));

puts ("YYYY MM DD hh:mn:s:ms :");
 gets (Buff);
 sscanf(Buff, "%4d%*c%2d%*c%2d%*c"

 "%2d%*c%2d%*c%2d%*c%6d",
 &dateYMDHMSM.year, &dateYMDHMSM.month, &dateYMDHMSM.day,

 &dateYMDHMSM.hour, &dateYMDHMSM.minute, &dateYMDHMSM.second,
&dateYMDHMSM.muSecond);

result = brathl_YMDHMSM2Seconds(&dateYMDHMSM, refDateDest, &dateSeconds);
printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateSecond(&dateSeconds);
 PrintfDateYMDHMSM(&dateYMDHMSM);

break;

 case 'B' : // Julian --> YMDHMSM
 case 'b' : // Julian --> YMDHMSM
 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));
 memset(&dateJulian, '\0', sizeof(dateJulian));

 97

Basic Radar Altimetry Toolbox User Manual

dateJulian.refDate = refDate;

puts ("julian :");
 gets (Buff);
 sscanf(Buff, "%lf", &dateJulian.julian);

result = brathl_Julian2YMDHMSM(&dateJulian, &dateYMDHMSM);
printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateJulian(&dateJulian);
 PrintfDateYMDHMSM(&dateYMDHMSM);

break;

 case 'C' : // YMDHMSM --> Julian
 case 'c' : // YMDHMSM --> Julian
 memset(&dateJulian, '\0', sizeof(dateJulian));
 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));

puts ("YYYY MM DD hh:mn:s:ms :");
 gets (Buff);
 sscanf(Buff, "%4d%*c%2d%*c%2d%*c"

 "%2d%*c%2d%*c%2d%*c%6d",
 &dateYMDHMSM.year, &dateYMDHMSM.month, &dateYMDHMSM.day,

 &dateYMDHMSM.hour, &dateYMDHMSM.minute, &dateYMDHMSM.second,
&dateYMDHMSM.muSecond);

result = brathl_YMDHMSM2Julian(&dateYMDHMSM, refDateDest, &dateJulian);
printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateJulian(&dateJulian);
 PrintfDateYMDHMSM(&dateYMDHMSM);

break;

 case 'D' : // diff Date1 (ref. src) - Date2 (ref. dest) (YMDHMSM)
 case 'd' : // diff Date1 (ref. src) - Date2 (ref. dest) (YMDHMSM)
 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));
 memset(&dateYMDHMSM2, '\0', sizeof(dateYMDHMSM2));

puts ("Date 1 YYYY MM DD hh:mn:s:ms :");
 gets (Buff);
 sscanf(Buff, "%4d%*c%2d%*c%2d%*c"

 "%2d%*c%2d%*c%2d%*c%6d",
 &dateYMDHMSM.year, &dateYMDHMSM.month, &dateYMDHMSM.day,

 &dateYMDHMSM.hour, &dateYMDHMSM.minute, &dateYMDHMSM.second,
&dateYMDHMSM.muSecond);

puts ("Date 2 YYYY MM DD hh:mn:s:ms :");
 gets (Buff);
 sscanf(Buff, "%4d%*c%2d%*c%2d%*c"

 "%2d%*c%2d%*c%2d%*c%6d",
 &dateYMDHMSM2.year, &dateYMDHMSM2.month, &dateYMDHMSM2.day,

 &dateYMDHMSM2.hour, &dateYMDHMSM2.minute,
&dateYMDHMSM2.second, &dateYMDHMSM2.muSecond);

 diff = 0;

result = brathl_DiffYMDHMSM(&dateYMDHMSM, &dateYMDHMSM2, &diff);
printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateYMDHMSM(&dateYMDHMSM);
 PrintfDateYMDHMSM(&dateYMDHMSM2);
 printf("\t----> Difference : %lf \n", diff);

break;

 case 'E' : // diff Date1 (ref. src) - Date2 (ref. dest) (DSM)
 case 'e' : // diff Date1 (ref. src) - Date2 (ref. dest) (DSM)
 memset(&dateDSM, '\0', sizeof(dateDSM));
 memset(&dateDSM2, '\0', sizeof(dateDSM2));

dateDSM.refDate = refDate;
dateDSM2.refDate = refDateDest;

 98

Basic Radar Altimetry Toolbox User Manual

puts (" Date 1 D S M :");
 gets (Buff);
 sscanf(Buff, "%ld%*c%ld%*c%ld ",

 &dateDSM.days,
 &dateDSM.seconds,
 &dateDSM.muSeconds);

puts (" Date 2 D S M :");
 gets (Buff);
 sscanf(Buff, "%ld%*c%ld%*c%ld ",

 &dateDSM2.days,
 &dateDSM2.seconds,
 &dateDSM2.muSeconds);

 diff = 0;

result = brathl_DiffDSM(&dateDSM, &dateDSM2, &diff);
printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateDSM(&dateDSM);
 PrintfDateDSM(&dateDSM2);
 printf("\t----> Difference : %lf \n", diff);

break;

 case 'F' : // diff Date1 (ref. src) - Date2 (ref. dest) (Julian)
 case 'f' : // diff Date1 (ref. src) - Date2 (ref. dest) (Julian)
 memset(&dateDSM, '\0', sizeof(dateDSM));
 memset(&dateDSM2, '\0', sizeof(dateDSM2));

dateJulian.refDate = refDate;
dateJulian2.refDate = refDateDest;

puts ("Date 1 julian :");
 gets (Buff);
 sscanf(Buff, "%lf", &dateJulian.julian);

puts ("Date 2 julian :");
 gets (Buff);
 sscanf(Buff, "%lf", &dateJulian2.julian);

 diff = 0;

result = brathl_DiffJulian(&dateJulian, &dateJulian2, &diff);
printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateJulian(&dateJulian);
 PrintfDateJulian(&dateJulian2);
 printf("\t----> Difference : %lf \n", diff);

break;

 case 'N' : // Now --> YMDHMSM
 case 'n' : // Now --> YMDHMSM
 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));

result = brathl_NowYMDHMSM(&dateYMDHMSM);
printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateYMDHMSM(&dateYMDHMSM);
break;

 case 'Q' : // YMDHMSM --> Quantième
 case 'q' : // YMDHMSM --> Quantième
 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));

puts ("YYYY MM DD hh:mn:s:ms :");
 gets (Buff);
 sscanf(Buff, "%4d%*c%2d%*c%2d%*c"

 "%2d%*c%2d%*c%2d%*c%6d",
 &dateYMDHMSM.year, &dateYMDHMSM.month, &dateYMDHMSM.day,

 &dateYMDHMSM.hour, &dateYMDHMSM.minute, &dateYMDHMSM.second,
&dateYMDHMSM.muSecond);

 99

Basic Radar Altimetry Toolbox User Manual

 uint32_t quantieme;
result = brathl_Quantieme(&dateYMDHMSM, &quantieme);
printf("result %d %s\n", result, brathl_Errno2String(result));

 PrintfDateYMDHMSM(&dateYMDHMSM);
 printf("\t----> Quantieme : %ld \n", quantieme);

break;

 default : break;
 }

 if ((c != 'X') && (c != 'x'))
 {
 puts("Press enter key to continue");
 getchar();
 }

 } while ((c != 'X') && (c != 'x'));

 return 0;

}

//--------------------------------------
void PrintfDateDSM(brathl_DateDSM *d)
{
 printf("\tbrathl_DateDSM days %ld seconds %ld museconds %ld ref. %d %s\n",
 d->days, d->seconds, d->muSeconds, d->refDate, brathl_refDateUser1);

}
//--------------------------------------

void PrintfDateSecond(brathl_DateSecond *d)
{
 printf("\tbrathl_DateSecond nbSeconds %lf ref. %d %s\n",
 d->nbSeconds, d->refDate, brathl_refDateUser1);

}
//--------------------------------------
void PrintfDateJulian(brathl_DateJulian *d)
{
 printf("\tbrathl_DateJulian julian %lf ref. %d %s\n",
 d->julian, d->refDate, brathl_refDateUser1);

}

//--------------------------------------
void PrintfDateYMDHMSM(brathl_DateYMDHMSM *d)
{
 printf("\tbrathl_DateYMDHMSM year %ld month %ld day %ld hour %ld minute %ld second %ld
musecond %ld ref. %s\n",
 d->year, d->month, d->day, d->hour, d->minute, d->second, d->muSecond,
brathl_refDateUser1);

}

==================
Cycle/date conversion functions
==================

To convert cycle <-> date, these functions use an asci parameter file (ascii file) with records :

 field 1 : Name of the mission
 field 2 : Cycle reference

 100

Basic Radar Altimetry Toolbox User Manual

 field 3 : Pass reference
 field 4 : Reference date in decimal julian day

Each field has to be separated by, at least, a non-numeric character

The file can contained several records for a same mission.
Only the field with the greatest date is taken into account

You can add records.
You can add comments, commented lines start by '#' character.

If the file doesn't exist, default values are :

Name Cycle Pass Reference date

Jason-1 99 230 19987.9081795
Topex/Poseidon 442 230 19987.9127535
ERS2 66 598 18831.768334
ERS1-A 15 1 15636.938955
ERS1-B 42 108 16538.6732895
ENVISAT 30 579 19986.106016

brathl_Cycle2YMDHMSM
brathl_YMDHMSM2Cycle

Cycle/date conversion example

#include <brathl.h>
#include <brathl_error.h>

void PrintfDateDSM(brathl_DateDSM *d);
void PrintfDateSecond(brathl_DateSecond *d);
void PrintfDateJulian(brathl_DateJulian *d);
void PrintfDateYMDHMSM(brathl_DateYMDHMSM *d);

int main (int argc, char *argv[])
{

 uint32_t cycle = 0;

 uint32_t pass = 0;

 int32_t result = BRATHL_SUCCESS;
 char c;

 double diff = 0;

 brathl_mission mission;

 brathl_DateYMDHMSM dateYMDHMSM;

 char Buff[1024];

 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));

 puts ("saisir la mission : \n"
 "1 --> TOPEX\n"
 "2 --> JASON1\n"
 "3 --> ERS2\n"
 "4 --> ENVISAT\n"
 "5 --> ERS1_A\n"
 "6 --> ERS1_B\n"
 "7 --> GFO\n"
 "x Exit\n");

 c = getchar();
 getchar();

 101

Basic Radar Altimetry Toolbox User Manual

 switch (c)
 {
 case 'X' :
 case 'x' :
 return 0;
 case '1' : mission = TOPEX; break;
 case '2' : mission = JASON1; break;
 case '3' : mission = ERS2; break;
 case '4' : mission = ENVISAT; break;
 case '5' : mission = ERS1_A; break;
 case '6' : mission = ERS1_B; break;
 case '7' : mission = GFO; break;

 break;
 default : mission = TOPEX;
 }

 do
 {
 puts ("\nConversion Cycle <--> Date: \n"
 "1 - Cycle --> Date YMDHMSM\n"
 "2 - Date YMDHMSM -->Cycle\n"
 "x Exit\n");

 c = getchar();
 getchar();

 switch (c)
 {
 case '1' : // Cycle --> Date YMDHMSM
 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));

cycle = pass = 0;

puts ("Cycle Pass:");
 gets (Buff);
 sscanf(Buff, "%ld%*c%ld ", &cycle, &pass);
 result = brathl_Cycle2YMDHMSM(mission, cycle, pass, &dateYMDHMSM);

printf("result %d %s\n", result, brathl_Errno2String(result));
printf("\tcycle %d pass %d\n", cycle, pass);

 PrintfDateYMDHMSM(&dateYMDHMSM);
break;

 case '2' : // Date YMDHMSM -->Cycle
 memset(&dateYMDHMSM, '\0', sizeof(dateYMDHMSM));

cycle = pass = 0;

 puts ("YYYY MM DD hh:mn:s:ms :");
 gets (Buff);
 sscanf(Buff, "%4d%*c%2d%*c%2d%*c"

 "%2d%*c%2d%*c%2d%*c%6d",
 &dateYMDHMSM.year, &dateYMDHMSM.month, &dateYMDHMSM.day,

 &dateYMDHMSM.hour, &dateYMDHMSM.minute, &dateYMDHMSM.second,
&dateYMDHMSM.muSecond);

 result = brathl_YMDHMSM2Cycle(mission, &dateYMDHMSM, &cycle, &pass);

printf("result %d %s\n", result, brathl_Errno2String(result));
printf("\tcycle %d pass %d\n", cycle, pass);

 PrintfDateYMDHMSM(&dateYMDHMSM);
break;

 default : break;
 }

 if ((c != 'X') && (c != 'x'))
 {
 puts("Press enter key to continue");
 getchar();
 }

 } while ((c != 'X') && (c != 'x'));

 return 0;

}

 102

Basic Radar Altimetry Toolbox User Manual

//--------------------------------------
void PrintfDateDSM(brathl_DateDSM *d)
{
 printf("\tbrathl_DateDSM days %ld seconds %ld museconds %ld ref. %d %s\n",
 d->days, d->seconds, d->muSeconds, d->refDate, brathl_refDateUser1);

}
//--------------------------------------

void PrintfDateSecond(brathl_DateSecond *d)
{
 printf("\tbrathl_DateSecond nbSeconds %lf ref. %d %s\n",
 d->nbSeconds, d->refDate, brathl_refDateUser1);

}
//--------------------------------------
void PrintfDateJulian(brathl_DateJulian *d)
{
 printf("\tbrathl_DateJulian julian %lf ref. %d %s\n",
 d->julian, d->refDate, brathl_refDateUser1);

}

//--------------------------------------
void PrintfDateYMDHMSM(brathl_DateYMDHMSM *d)
{
 printf("\tbrathl_DateYMDHMSM year %ld month %ld day %ld hour %ld minute %ld second %ld musecond %ld
ref. %s\n",
 d->year, d->month, d->day, d->hour, d->minute, d->second, d->muSecond, brathl_refDateUser1);

}

==================
Data reading function
==================

brathl_ReadData

Example:

#include <stdio.h>
#include <stdlib.h>
#include "brathl.h"
#include "brathl_error.h"

int main(int argc, char **argv)
{
 char *Names[10];
 int32_t ReturnCode;
 double *Data[2] = {NULL,NULL};
 int32_t Sizes[2] = {-1, -1};
 char *Expressions[2];
 char *Units[2];
 int32_t ActualSize;

 Names[0] = "JA1_GDR_2PaP124_001.CNES";
 Names[1] = "JA1_GDR_2PaP124_002.CNES";
 Names[2] = "JA1_GDR_2PaP124_003.CNES";

 Expressions[0] = "latitude + longitude";
 Units[0] = "radians";
 Expressions[1] = "swh_ku";
 Units[1] = "m";

 ReturnCode = brathl_ReadData(3, Names,
 "data",
 "latitude > 20",
 2,
 Expressions,
 Units,
 Data,
 Sizes,

 103

Basic Radar Altimetry Toolbox User Manual

 &ActualSize,
 0,
 0,
 0);

 printf("Return code : %d\n", ReturnCode);
 printf("Acutal number of data: %d\n", ActualSize);
 return 0;
}

 104

	1. Introduction
	2. Data read and processed
	3. How to install BRAT
	3.1. Windows© binaries
	3.2. Linux binaries
	3.3. From source

	4. How to uninstall BRAT
	4.1. Windows© binaries
	4.2. Linux binaries
	4.3. From source

	5. BRAT Graphical User Interface (GUI)
	5.1. Overview
	5.2. Starting with BRATGUI
	5.2.1.Create a Workspace
	5.2.2.Create a dataset
	5.2.3.Create an operation
	5.2.3.1. Data
	5.2.3.2. Created type
	5.2.3.3. Data mode
	5.2.3.4. Functions
	5.2.3.5. Data expression
	5.2.3.6. Units
	5.2.3.7. Formulas
	5.2.3.8. Select expression
	5.2.3.9. Output

	5.2.4.Create a view
	5.2.4.1. ‘Y=F(X)’
	5.2.4.2. ‘Z=F(lon,lat)’

	6. Visualisation interface
	6.1. ‘Y=F(X)’
	6.2. ‘Z=F(lon, lat)’
	6.2.1.Display properties
	6.2.2.Color table editor
	6.2.2.1. two-color gradient color tables
	6.2.2.2. Multi-color gradient color tables

	6.2.3.Contour table editor

	7. Using BRAT in ‘command lines’ mode with parameter files
	7.1. Creating an output NetCDF file
	7.2. Visualising an output NetCDF file through BRAT
	7.3. Using the parameter files to process many datasets

	8. BRATHL Application Programming Interfaces (APIs)
	8.1. Data reading function
	8.2. Cycle/date conversion functions
	8.3. Date conversion/computation functions
	8.4. Named structures

